Recent psychophysical experiments imply that the brain employs a neural representation of the uncertainty in sensory stimuli and that probabilistic computations are supported by the cortex. Several candidate neural codes for uncertainty have been posited including Probabilistic Population Codes (PPCs). PPCs support various versions of probabilistic inference and marginalisation in a neurally plausible manner. However, in order to establish whether PPCs can be of general use, three important limitations must be addressed. First, it is critical that PPCs support learning. For example, during cue combination, subjects are able to learn the uncertainties associated with the sensory cues as well as the prior distribution over the stimulus. However, previous modelling work with PPCs requires these parameters to be carefully set by hand. Second, PPCs must be able to support inference in non-linear models. Previous work has focused on linear models and it is not clear whether non-linear models can be implemented in a neurally plausible manner. Third, PPCs must be shown to scale to high-dimensional problems with many variables. This contribution addresses these three limitations of PPCs by establishing a connection with variational Expectation Maximisation (vEM). In particular, we show that the usual PPC update for cue combination can be interpreted as the E-Step of a vEM algorithm. The corresponding M-Step then automatically provides a method for learning the parameters of the model by adapting the connection strengths in the PPC network in an unsupervised manner. Using a version of sparse coding as an example, we show that the vEM interpretation of PPC can be extended to non-linear and multi-dimensional models and we show how the approach scales with the dimensionality of the problem. Our results provide a rigorous assessment of the ability of PPCs to capture the probabilistic computations performed in the cortex.