In collaborative tasks, humans can make better joint decisions by aggregating individual information in proportion to their communicated confidence (Bahrami et al., 2010). However, if people blindly rely on their partner’s confidence expressions, they could easily reach suboptimal solutions when their collaborator’s confidence judgments are not calibrated to their performance, but for instance exhibit an overconfidence bias. Given that calibrated advisers are rated as more credible (Sah et al., 2013), we propose that prior experience with a collaborator will lead to a recalibration of their confidence judgements before incorporating their advice. In an online experiment, participants first viewed two other fictitious participants, one calibrated and one biased, perform a categorization task. Following this, participants completed a similar task by taking advice from just one of the two previously observed advisers on a given trial. We tested whether participants chose the adviser who had the trial-by-trial highest expressed or recalibrated confidence.