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We have studied some of the design trade-offs governing visual represen-
tations based on spatially invariant conjunctive feature detectors, with an
emphasis on the susceptibility of such systems to false-positive recogni-
tion errors—Malsburg’s classical binding problem. We begin by deriving
an analytical model that makes explicit how recognition performance is
affected by the number of objects that must be distinguished, the number
of features included in the representation, the complexity of individual
objects, and the clutter load, that is, the amount of visual material in the
field of view in which multiple objects must be simultaneously recog-
nized, independent of pose, and without explicit segmentation. Using the
domain of text to model object recognition in cluttered scenes, we show
that with corrections for the nonuniform probability and nonindepen-
dence of text features, the analytical model achieves good fits to measured
recognition rates in simulations involving a wide range of clutter loads,
word sizes, and feature counts. We then introduce a greedy algorithm for
feature learning, derived from the analytical model, which grows a rep-
resentation by choosing those conjunctive features that are most likely
to distinguish objects from the cluttered backgrounds in which they are
embedded. We show that the representations produced by this algorithm
are compact, decorrelated, and heavily weighted toward features of low
conjunctive order. Our results provide a more quantitative basis for un-
derstanding when spatially invariant conjunctive features can support
unambiguous perception in multiobject scenes, and lead to several in-
sights regarding the properties of visual representations optimized for
specific recognition tasks.

1 Introduction

The problem of classifying objects in visual scenes has remained a scientific
and a technical holy grail for several decades. In spite of intensive research in
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the field of computer vision and a large body of empirical data from the fields
of visual psychophysics and neurophysiology, the recognition competence
of a two-year-old human child remains unexplained as a theoretical matter
and well beyond the technical state of the art. This fact is surprising given
that (1) the remarkable speed of recognition in the primate brain allows
for only very brief processing times at each stage in a pipeline containing
only a few stages (Potter, 1976; Oram & Perrett, 1992; Heller, Hertz, Kjær, &
Richmond, 1995; Thorpe, Fize, & Marlot, 1996; Fize, Boulanouar, Ranjeva,
Fabre-Thorpe, & Thorpe, 1998), (2) the computations that can be performed
within each neural processing stage are strongly constrained by the structure
of the underlying neural tissue, about which a great deal is known (Hubel &
Wiesel, 1968; Szentagothai, 1977; Jones, 1981; Gilbert, 1983; Van Essen, 1985;
Douglas & Martin, 1998), (3) the response properties of neurons in each of
the relevant brain areas have been well studied, and evolve from stage to
stage in systematic ways (Oram & Perrett, 1994; Logothetis & Sheinberg,
1996; Tanaka, 1996), and (4) computer systems may already be powerful
enough to emulate the functions of these neural processing stages, were it
only known what exactly to do.

A number of neuromorphic approaches to visual recognition have been
proposed over the years (Pitts & McCullough, 1947; Fukushima, Miyake,
& Ito, 1983; Sandon & Urh, 1988; Zemel, Mozer, & Hinton, 1990; Le Cun et
al., 1990; Mozer, 1991; Swain & Ballard, 1991; Hummel & Biederman, 1992;
Lades et al., 1993; Califano & Mohan, 1994; Schiele & Crowley, 1996; Mel,
1997; Weng, Ahuja, & Huang, 1997; Lang & Seitz, 1997; Wallis & Rolls, 1997;
Edelman & Duvdevani-Bar, 1997). Many of these neurally inspired systems
involve constructing banks of feature detectors, often called receptive fields
(RFs), each of which is sensitive to some localized spatial configuration
of image cues but invariant to one or more spatial transformations of its
preferred stimulus—typically including invariance to translation, rotation,
scale, or spatial distortion, as specified by the task.1 Since the goal to ex-
tract useful invariant features is common to most conventional approaches
to computer vision as well, the “neuralness” of a recognition system lies
primarily in its emphasis on feedforward, hierarchical construction of the
invariant features, where the computations are usually restricted to simple
spatial conjunction and disjunction operations (e.g., Fukushima et al., 1983),
and/or specify the inclusion of a relatively large number of invariant fea-
tures in the visual representation (see Mozer, 1991; Califano & Mohan, 1994;
Mel, 1997)—anywhere from hundreds to millions. Neural approaches typ-
ically also involve some form of learning, whether supervised by category
labels at the output layer (Le Cun et al., 1990), supervised directly within

1 A number of the above-mentioned systems have emphasized other mechanisms
instead of or in addition to straightforward image filtering operations (Zemel et al., 1990;
Mozer, 1991; Hummel & Biederman, 1992; Lades et al., 1993; Califano & Mohan, 1994;
Edelman & Duvdevani-Bar, 1997).
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intermediate network layers (Fukushima et al., 1983), or involving purely
unsupervised learning principles that home in on features that occur fre-
quently in target objects (Fukushima et al., 1983; Zemel et al., 1990; Wallis
& Rolls, 1997; Weng et al., 1997). While architectures of this general type
have performed well in a variety of difficult, though limited, recognition
problems, it has yet to be proved that a few stages of simple feedforward
filtering operations can explain the remarkable recognition and classifica-
tion capacities of the human visual system, which is commonly confronted
with scenes acquired from varying viewpoints, containing multiple objects
drawn from thousands of categories, and appearing in an infinite panoply
of spatial configurations. In fact, there are reasons for pessimism.

1.1 The Binding Problem. One of the most persistent worries concern-
ing this class of architecture is due to Malsburg (1981), who noted the po-
tential for ambiguity in visual representations constructed from spatially
invariant filters. A spatial binding problem arises, for example, when each
detector in the visual representation reports only the presence of some el-
emental object attribute but not its spatial location (or, more generally, its
pose). Under these unfavorable conditions, an object is hallucinated (i.e., de-
tected when not actually present) whenever all of its elemental features are
present in the visual field, even when embedded piecemeal in improper con-
figurations within a scattered coalition of distractor objects (see Figure 1A).
This type of failure mode for a visual representation emanates from the dual
pressures to cope with uncontrolled variation in object pose, which forces
the use of detectors with excessive spatial invariances, and the necessity
to process multiple objects simultaneously, which overstimulate the visual
representation and increase the probability of ambiguous perception.

One approach to the binding problem is to build a separate, full-order
conjunctive detector for every possible view (e.g., spatial pose, state of occlu-
sion, distortion, degradation) of every possible object, and then for each ob-
ject provide a huge disjunction that pools over all of the views of that object.

Malsburg (1981) pointed out that while the binding problem could thus
be solved, the remedy is a false one since it leads to a combinatorial explosion
in the number of needed visual processing operations (see Figure 1B). Other
courses of action include (1) strategies for image preprocessing designed to
segment scenes into regions containing individual objects, thus reducing
the clutter load confronting the visual representation, and (2) explicit nor-
malization procedures to reduce pose uncertainty (e.g., centering, scaling,
warping), thereby reducing the invariance load that must be sustained by
the individual receptive fields. Both strategies reduce the probability that
any given object’s feature set will be activated by a spurious collection of
features drawn from other objects.

1.2 Wickelsystems. Preprocessing strategies aside, various workers
have explored the middle ground between “binding breakdown” and “com-
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Figure 1: (A) A binding problem occurs when an object’s representation can be
falsely activated by multiple (or inappropriate) other objects. (B) A combinatorial
explosion arises when all possible views of all possible objects are represented
by explicit conjunctions. (C) Compromise representation containing an inter-
mediate number of receptive fields that bind image features to intermediate
order.
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binatorial catastrophe,” where a visual representation contains an interme-
diate number of detectors, each of which binds together an intermediate-
sized subset of feature elements in their proper relations before integrating
out the irrelevant spatial transformations (see Mozer, 1991, for a thoughtful
advocacy of this position). Under this compromise, each detector becomes
a spatially invariant template for a specific minipattern, which is more com-
plex than an elemental feature, such as an oriented edge, but simpler than
a full-blown view of an object (see Figure 1C). A set of spatially invariant
features of intermediate complexity can be likened to a box of jumbled jig-
saw puzzle pieces: although the final shape of the composite object—the
puzzle—is not explicitly contained in this peculiar “representation,” it is
nonetheless unambiguously specified: the collection of parts (features) can
interlock in only one way.

An important early version of this idea is due to Wickelgren (1969), who
proposed a scheme for representing the phonological structure of spoken
language involving units sensitive to contiguous triples of phonological
features but not to the absolute position of the tuples in the speech stream.
Though not phrased in this language, “Wickelfeatures” were essentially
translation-invariant detectors of phonological minipatterns of intermedi-
ate complexity, analyzing the one-dimensional speech signal. Representa-
tional schemes inspired by Wickelgren’s proposal have since cropped up in
other influential models of language processing (McClelland & Rumelhart,
1981; Mozer, 1991).

The use of invariant conjunctive features schemes to address representa-
tional problems in fields other than vision highlights the fact that the binding
problem is not an inherently visuospatial one. Rather, it can arise whenever
the set of features representing an object (visual, auditory, olfactory, etc.) can
be fully, and thus inappropriately, activated by input “scenes” that do not
contain the object. In general, a binding problem has the potential to exist
whenever a representation lacks features that conjoin an object’s elemen-
tal attributes (e.g., parts, spatial relations, surface properties) to sufficiently
high conjunctive order. On the solution side, binding ambiguity can be mit-
igated as in the scenario of Figure 1 by building conjunctive features that
are increasingly object specific, until the probability of false-positive acti-
vation for any object is driven below an acceptable threshold. Given that
this conjunctive order-boosting prescription to reduce ambiguity is algo-
rithmically trivial, it shifts emphasis away from the question as to how to
eliminate binding ambiguity, toward the question as to whether, for a given
recognition problem, ambiguity can be eliminated at an acceptable cost.

1.3 A Missing Theory. In spite of the importance of spatially invariant
conjunctive visual representations as models of neural function, and the
demonstrated practical successes of computer vision systems constructed
along these lines, many of the design trade-offs that govern the performance
of visual “Wickelsystems” in response to cluttered input images have re-
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mained poorly understood. For example, it is unknown in general how
recognition performance depends on (1) the number of object categories
that must be distinguished, (2) the similarity structure of the object category
distribution (i.e., whether object categories are intrinsically very similar or
very different from each other), (3) the featural complexity of individual
objects, (4) the number and conjunctive order of features included in the
representation, (5) the clutter load (i.e., the amount of visual material in
the field of view from which multiple objects must be recognized without
explicit segmentation), and (6) the invariance load (i.e., the set of spatial
transformations that do not affect the identities of objects, and that must be
ignored by each individual detector). In a previous analysis that touched
on some of these issues, Califano and Mohan (1994) showed that large,
parameterized families of complex invariant features (e.g., containing 106

elements or more) could indeed support recognition of multiple objects in
complex scenes without prior segmentation or discrimination among a large
number of highly similar objects in a spatially invariant fashion. However,
these authors were primarily concerned with the mathematical advantages
of large versus small feature sets in a generic sense, and thus did not test
their analytical predictions using a large object database and varying object
complexity, category structure, clutter load, and other factors.

Beyond our lack of understanding regarding the trade-offs influencing
system performance, the issue as to which invariant conjunctive features
and of what complexity should be incorporated into a visual representa-
tion, through learning, has also not been well worked out as a conceptual
matter. Previous approaches to feature learning in neuromorphic visual
systems have invoked (1) generic gradient-based supervised learning prin-
ciples (e.g., Le Cun et al., 1990) that offer no direct insight into the qualities of
a good representation, (2) or straightforward unsupervised learning princi-
ples (e.g., Wallis & Rolls, 1997), which tend to discover frequently occurring
features or principal components rather than those needed to distinguish
objects from cluttered backgrounds on a task-specific basis. Network ap-
proaches to learning have also typically operated within a fixed network
architecture, which largely predefines and homogenizes the complexity of
top-level features to be used for recognition, though optimal representa-
tions may actually require features drawn from a range of complexities,
and could vary in their composition on a per-object basis. All this suggests
that further work on the principles of feature learning is needed.

In this article, we describe our work to test a simple analytical model that
captures several trade-offs governing the performance of visual recognition
systems based on spatially invariant conjunctive features. In addition, we
introduce a supervised greedy algorithm for feature learning that grows a
visual representation in such a way as to minimize false-positive recognition
errors. Finally, we consider some of the surprising properties of “good”
representations and the implications of our results for more realistic visual
recognition problems.
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2 Methods

2.1 Text World as a Model for Object Recognition. The studies de-
scribed here were carried out in text world, a domain with many of the
complexities of vision in general (see Figure 2): target objects are numer-
ous (more than 40,000 words in the database), are highly nonuniform in
their prior probabilities (relative probabilities range from 1 to 400,000), are
constructed from a set of relatively few underlying parts (26 letters), and
individually can contain from 1 to 20 parts. Furthermore, the parts from
which words are built are highly nonuniform in their relative frequencies
and contain strong statistical dependencies. Finally, word objects occur in
highly cluttered visual environments—embedded in input arrays in which
many other words are simultaneously present—but must nonetheless be
recognized regardless of position in the visual field.

Although text world lacks several additional complexities characteristic of
real object vision (see section 6), it nonetheless provides a rich but tractable
domain in which to quantify binding trade-offs and to facilitate the testing of
analytical predictions and the development of feature learning algorithms.
An important caveat, however, is that the use of text as a substrate for devel-
oping and testing our analytical model does not imply that our conclusions
bear directly on any aspect of human reading behavior.

Two databases were used in the studies. The word database contained
44,414 entries, representing all lowercase punctuation-free words and their
relative frequencies found in 5 million words in the Wall Street Journal (WSJ)
(available online from the Association for Computational Linguistics at
http://morph.ldc.upenn.edu/). The English text database consisted of ap-
proximately 1 million words drawn from a variety of sources (Kuc̆era &
Francis, 1967).

2.2 Recognition Using n-Grams. A natural class of visual features in
text world is the position-invariant n-gram, defined here as a binary detector
that responds when a specific spatial configuration of n letters is found
anywhere (one or more times) in the input array.2 The value of n is termed the
conjunctive or binding order of the n-gram, and the diameter of the n-gram
is the maximum span between characters specified within it. For example,
th** is a 3-gram of diameter 5 since it specifies the relative locations of three
characters (including the space character but not wild card characters *),
and spans a field five characters in width. The concept of an n-gram is used
also in computational linguistics, though usually referring to n-tuples of
consecutive words (Charniak, 1993).

2 An n-gram could also be multivalued, that is, respond in a graded fashion depending
on the number of occurrences of the target feature in the input; the binary version was
used here to facilitate analysis.
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Non-Uniform Letter Frequencies

1

10

Words Rank-Ordered by Frequency

Lo
g 

R
el

at
iv

e 
F

re
qu

en
cy

Words Rank-Ordered by Frequency

 Non-Uniform Word Frequencies  Non-Uniform Word Sizes

Non-Uniform 2-gram Frequencies

A B

C D

E

10 2

10 3

10 4

10 5

10 6

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

R
el

at
iv

e 
F

re
qu

en
cy

 (
x 

10
00

)

Adjacent 2-grams Ordered by Frequency
_ e t a o n h i s r d l u c wm f g y p b v k x j q z

0

50

100

150

200

250

300

350

400

450

R
el

at
iv

e 
F

re
qu

en
cy

Single Letters Ordered by Frequency

Statistical Dependencies Among Adjacent Letters

a b c d e f g h i j k l m n o p q r s t u v w x y z
0

1

2

3

4

5

In
fo

 G
ai

n 
A

bo
ut

 A
dj

ac
en

t L
et

te
r 

(B
its

)

letter to left

letter to right

uniform
approximation

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

1

2

3

4

5

6

7

8

W
or

d 
C

ou
nt

s 
(x

 1
00

0)

Word Size (Letters)

Figure 2: Text world was used as a surrogate for visual recognition in multiob-
ject scenes. (A) Word frequencies in the 5-million-word Wall Street Journal (WSJ)
corpus are highly nonuniform, following an approximately exponential decay
according to Zipf’s law. (B) Words range from 1 to 20 characters in length; 7-
letter words are most numerous. (C,D) Relative frequencies of individual letters
or adjacent letter pairs are highly nonuniform. Ordinate values represent the
number of times the feature was found in the WSJ corpus. The dashed rectangle
in D represents simplifying assumption regarding the 2-gram frequency distri-
bution used for quantitative predictions below. (E) The parts of words show
strong statistical dependencies. Columns show information gain about identity
of the adjacent letter (or space character) to left or right, given the presence
of letter indicated on the x-axis. The dashed horizontal line indicates perfect
knowledge—log2(27) = 4.75 bits.
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In relation to conventional visual domains, n-grams may be viewed as
complex visual feature detectors, each of which responds to a specific con-
junction of subparts in a specific spatial configuration, but with built-in
invariance to a set of spatial transformations predefined by the recognition
task. In relation to a shape-based visual domain, a 2-gram is analogous to a
corner detector that signals the co-occurrence of a vertical and a horizontal
edge, with appropriate spatial offsets, anywhere within an extended region
of the image.

LetR be a representation containing a set of position-invariant n-grams
analyzing the input array andW be a set of word detectors analyzing R,
with one detector for every entry in the word database. Each word detector
receives input from some or all of the n-gram units inR that are contained
in the respective word. However, not all of a word’s n-grams are necessarily
contained in R, and not all of the word’s n-grams that are contained in R
necessarily provide input to the word’s detector. For example, the represen-
tation might contain four spatially invariant featuresR = {a, c, o, s}, while
the detector for the word cows receives input from features c and s, but not
from the o feature, which is present inR, or from the w feature, which is not
contained inR. Word detectors are binary-valued conjunctions, responding
1 when all of their inputs are active and 0 otherwise. The collection of n-
grams feeding a word detector is hereafter referred to as the word’s minimal
feature set.

A correct recognition is scored when an input array of characters is pre-
sented, and each word detector is activated if and only if its associated word
is present in the input. Any word detector activated when its corresponding
word is not actually present in the input array is counted as a hallucination,
and the recognition trial is scored as an error. Recognition errors for a partic-
ular representationR are reported as the percentage of input arrays drawn
randomly from the English text database that generated one or more word
hallucinations.

3 Results

3.1 Word-Word Collisions in a Simple 1-Gram Representation. We be-
gin by considering the case without visual clutter and ask how often pairs
of isolated words collide with each other within a binary 1-gram represen-
tation, where each word is represented as an unordered set of individual
letters (with repeats ignored). This is the situation in which the binding
problem is most evident, as schematized in Figure 1A. Results for the ap-
proximately 2 billion distinct pairs of words in the database are summarized
in Table 1. About half of the 44,414 words contained in the database collide
with at least one other word (e.g., cerebrum ≡ cucumber , calculation
≡ unconstitutional ). The largest cohort of 1-gram-identical words con-
tained 28 members.
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Table 1: Performance of a Binary 1-Gram Representation in Word-Word Com-
parisons.

Quantity Value Comment

Number of 1-grams inR 27 a, b, . . . , z,

Number of distinct words 44,414 From 5 million words in the WSJ

Word-word comparisons ∼2 billion

Number of ambiguous words 24,488
analogies ≡ gasoline

suction ≡ continuous
scientists ≡ nicest

Largest self-similar cohort 28 words
stare, arrest, tears,
restates, reassert, rarest,
easter . . .

Baseline entropy in word-
frequency distribution 9.76 bits < log2(44, 414) = 15.4 bits

Residual uncertainty about
identity of a randomly drawn 1.4 bits Narrows field to ∼ 3 possible words
word, knowing its 1-grams

As an aside, we noted that if the two words compared were required
also to contain the same number of letters, the number of unambiguously
represented words fell to 11,377, and if the words were compared within a
multivalued 1-gram representation (where words matched only if they con-
tained the identical multiset of letters, i.e., in which repeats were taken into
account), the ambiguous word count fell further to 5,483, or about 12% of En-
glish words according to this sample. The largest self-similar cohort in this
case contained only 5 words (traces , reacts , crates , caters , caster ).

Although a 1-gram representation contains no explicit part-part rela-
tions and fails to pin down uniquely the identity of more than half of the
English words in the database, it nonetheless provides most of the needed
information to distinguish individually presented words. The baseline en-
tropy in the WSJ word-frequency distribution is 9.76 bits, significantly less
than the 15.4 = log2(44,414) bits for an equiprobable word set. The aver-
age residual uncertainty about the identity of a word drawn from the WSJ
word frequency distribution, given its 1-gram representation, is only 1.4 bits,
meaning that for individually presented words, the 1-gram representation
narrows the set of possibilities to about three words on average.

3.2 Word-Word Collisions in an Adjancent 2-Gram Representation.
Since many word objects have identical 1-gram representations even when
full multisets of letters are considered, we examined the collision rate when
an adjacent binary-valued 2-gram representation was used (i.e., coding the



Minimizing Binding Errors 257

Table 2: Performance of a Binary Adjacent 2-Gram Representation in Word-
Word Comparisons.

Quantity Value Comment

Number of adjacent 2-grams 729 [aa], [ab], . . . , [a ], . . . , [ z], [ ]

Number of words 44,414

Word-word comparisons ∼2 billion

Number of ambiguous words 57
ohhh, ahhh, shhh, hmmm,
whoosh, whirr , . . .

Largest self-similar cohort 5 words ohhh ≡ ohhhh ≡ ohhhhh
≡ ohhhhhh ≡ ohhhhhhh

Ambiguous word pairs that
are linguistically distinct 4 pairs

asses ≡ assess
possess ≡ possesses

seamstress ≡ seamstresses
intended ≡ indented

Words with identical
adjacent 2-gram multisets 2 words intended ≡ indented

set of all adjacent letter pairs, including the space character). This repre-
sentation is significant in that adjacent 2-grams are the simplest features
that explicitly encode spatial relations between parts. The results of this
test are summarized in Table 2. There were only 46 word-pair collisions
in this case, comprising 57 distinct words. Forty-two of the 46 problem-
atic word pairs differed only in the length of a string of repeated letters
(e.g., ahhh ≡ ahhhh ≡ ahhhhh . . . , similarly for ohhh, ummm, zzz,
wheee, whirrr ) or into sets representing varying spellings or misspellings
of the same word also involving repeated letters (e.g., tepees ≡ teepees,
llama ≡ lllama ). Only four pairs of distinct words collided that had dif-
ferent morphologies in the linguistic sense (see Table 2). When words were
constrained to be the same length or to contain the identical multiset of ad-
jacent 2-grams, only a single collision persisted: intended ≡ indented .

At the level of word-word comparisons, therefore, the binding of ad-
jacent letter pairs is sufficient practically to eliminate the ambiguity in a
large database of English words. We noted empirically that the inclusion of
fewer than 20 additional nonadjacent 2-grams to the representation entirely
eliminated the word-word ambiguity in this database, without recourse to
multiset comparisons or word-length constraints.

4 An Analytical Model

The results of these word-word comparisons suggest that under some cir-
cumstances, a modest number of low-order n-grams can disambiguate a
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large, complex object set. However, one of the most dire challenges to a
spatially invariant feature representation, object clutter, remains to be dealt
with.

To this end, we developed a simple probabilistic model to predict recogni-
tion performance when a cluttered input array containing multiple objects is
presented to a bank of feature detectors. To permit analysis of this problem,
we make two simplifying assumptions. First, we assume that the features
contained in R are statistically independent. This assumption is false for
English n-grams: for example, [th] predicts that [he] will follow about one
in three times, whereas the baseline rate for [he] is only 0.5%. Second, we
assume that all the features in R are activated with equal probability. This
is also false in English: for example ed occurs approximately 90,000 times
more often than [mj] (as in ramjet ).

Proceeding nonetheless under these two assumptions, it is straightfor-
ward to calculate the probability that no object in the database is hallucinated
in response to a randomly drawn input image. We first calculate the prob-
ability o that all of the features feeding a given object detector are activated
by an arbitrary input image:

o =

(
d− w
c− w

)
(

d
c

) = (d− w)! c!
(c− w)! d!

≈
( c

d

)w
, (4.1)

where d is the total number of feature detectors in R, w is the size of the
object’s minimal feature set, i.e., the number of features required by the
target object (word) detector, and c is the number of features activated by a
“cluttered” multiobject input image. The left-most combinatorial ratio term
in equation 4.1 counts the number of ways of choosing c from the set of
d detectors, including all w belonging to the target object, as a fraction of
the total number of ways of choosing c of the d detectors in any fashion.
The approximation in equation 4.1 holds when c and d are large compared
to w, as is generally the case. Equation 4.1 is, incidentally, the value of a
“hypergeometric” random variable in the special case where all of the target
elements are chosen; this distribution is used, for example, to calculate the
probability of picking a winning lottery ticket.

The probability that an object is hallucinated (i.e., perceived but not ac-
tually present) is given by

hi = oi − qi

1− qi
, (4.2)

where qi is the probability that the object does in fact appear in the input
image, which by definition means it cannot be hallucinated. According to
Zipf’s law, however, which tells us that most objects in the world are quite
uncommon (see Figure 2A), we may in some cases make the further simpli-
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fication that qi ¿ oi, giving hi ≈ oi. We adopt this assumption in the follow-
ing. (This simplification would result also from the assumption that inputs
consist of object-like noise structured to trigger false-positive perceptions.)

We may now write the probability of veridical perception—the proba-
bility that no object in the database is hallucinated,

pv = (1− h)N ≈
[

1−
( c

d

)w
]N

, (4.3)

where N is the number of objects in the database. This expression assumes a
homogeneous object database, where all N objects require exactly w features
in R. Given the independence assumption, the expression for a heteroge-
neous object database consists of a product of object-specific probabilities
pv =

∏
i(1 − ( c

d )
wi), where wi is the number of features required by object

i. Note that objects (words) containing the same number of parts (letters)
do not necessarily activate the same number of features (n-grams) in R,
depending on both the object and the composition ofR.

From an expansion to first order of equation 4.3 around (c/d)w = 0, which
gives pv = 1−N(c/d)w, it may be seen that perception is veridical (i.e., pv ≈ 1)
when (c/d)w ¿ 1/N. Thus, recognition errors are expected to be small when
(1) a cluttered input scene activates only a small fraction of the detectors in
R, (2) individual objects depend on as many detectors inR as possible, and
(3) the number of objects to be discriminated is not too large. The first two
effects generate pressure to grow large representations, since if d is scaled up
and c and w scale with it (as would be expected for statistically independent
features), recognition performance improves rapidly. Conveniently, the size
of the representation can always be increased by including new features of
higher binding order or larger diameters, or both.

It is also interesting to note that item 1 in the previous paragraph appears
to militate for a sparse visual representation, while equation 4.2 militates for
a dense representation. This apparent contradiction reflects the fundamental
trade-off between the need for individual objects to have large minimal fea-
ture sets in order to ward off hallucinations and the need for input scenes
containing many objects to activate as few features as possible, again in
order to minimize hallucinations. This trade-off is not captured within the
standard conception of a feature space, since the notion of “similarity as dis-
tance” in a feature space does not naturally extend to the situation in which
inputs represent multiobject scenes and require multiple output labels.

4.1 Fitting the Model to Recognition Performance in Text World. We
ran a series of experiments to test the analytical model. Input arrays vary-
ing in width from 10 to 50 characters were drawn at random from the text
database and presented toR. The representation contained either all adja-
cent 2-grams, calledR{2} to signify a diameter of 2, or the set of all 2-grams
of diameter 2 or 3, called R{2,3}, where R{2,3} was twice the size of R{2}.
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In individual runs, the word database was restricted to words of a single
length—two-letter words (N = 253), five-letter words (N = 4024), or seven-
letter words (N = 7159)—in order for the value of w to be kept relatively
constant within a trial.3 For each word size and input size and for each of
the two representations, average values for w and c were measured from
samples drawn from the word or text database. Not surprisingly, given the
assumption violations noted above (feature independence and equiproba-
bility), predicting recognition performance using these measured average
values led to gross underestimates of the hallucination errors actually gen-
erated by the representation.

Two kinds of corrections to the model were made. The first correction
involved estimating a better value for d, the number of n-grams contained
in the representation, since some of the detectors nominally present inR{2}
andR{2,3} were infrequently, if ever, actually activated. The value for d was
thus down-corrected to reflect the number of detectors that would account
for more than 99.9% of the probability density over the detector set: forR{2},
the representation size dropped from d = 729 to d′ = 409, while for R{2,3},
d was cut from 1,458 to 948.

The second correction was based on the fact that the n-grams activated
by English words and phrases are highly statistically redundant, meaning
that a set of d′ n-grams has many fewer than d′ underlying degrees of free-
dom. We therefore introduced a redundancy factor r, which allowed us
to “pretend” that the representation contained only d′/r virtual n-grams,
and a word or an input image activated only w/r or c/r virtual n-grams in
the representation, respectively. (Note that since c and d appear only as a
ratio in the approximation of equation 4.3, their r-corrections cancel out.)
By systematically adjusting the redundancy factor depending on test con-
dition (ranging from 1.60 to 3.45), qualitatively good fits to the empirical
data could be generated, as shown in Figure 3. The redundancy factor was
generally larger for long words relative to short words, reflecting the fact
that long English words have more internal predictability (i.e., fill a smaller
proportion of the space of long strings than short words fill in the space of
short strings). The r-factor was also larger for R{2,3} than for R{2}, reflect-
ing the fact that the increased feature overlap due to the inclusion of larger
feature diameters in R{2,3} leads to stronger interfeature correlations, and
hence fewer underlying degrees of freedom. Thus, with the inclusion of
correction factors for nonuniform activation levels and nonindependence
of the features inR, the remarkably simple relation in equation 4.3 captures
the main trends that describe recognition performance in scenarios with
database sizes ranging from 253 to 7159 words, words containing between

3 Since R{2} and R{2,3} contained all n-grams of their respective sizes, the value of
w could vary only from word to word to the extent that words contained one or more
repeated n-grams.
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Figure 3: Fits of equation 4.3 to recognition performance in text world. (A) The
representation, designated R{2}, contained the complete set of 729 adjacent 2-
grams (including the space character). The x-axis shows the width of a text
window presented to the n-gram representation, and the y-axis shows the prob-
ability that the input generates one or more hallucinated words. Analytical pre-
dictions are shown in dashed lines using redundancy factors specified in the
legend. (B) Same as A, with results forR{2,3}.
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2 and 7 letters, input arrays containing from 10 to 50 characters, and using
representations varying in size by a factor of 2. We did not attempt to fit
larger ranges of these experimental variables.

Regarding the sensitivity of the model fits to the choice of d′ and r, we
noted first that fits were not strongly affected by the cumulative probability
cutoff used to choose d′—qualitatively reasonable fits could be also gener-
ated using a cutoff value of 95%, for example, for which d′ values forR{2,3}
and R{2} shrank to 220 and 504, respectively. In contrast, we noted that a
change of one part per thousand in the value of r could result in a significant
change in the shape a curve generated by equation 4.3, and with it signif-
icant degradation of the quality of a fit. However, the systematic increase
in the optimal value of r with increasing word size and representation size
indicates that this redundancy correction factor is not an entirely free pa-
rameter. It is also worth emphasizing that a redundancy “factor,” which
uniformly scales w, c, and d, is a very crude model of the complex statisti-
cal dependencies that exist among English n-grams; the fact that any set of
small r values can be found that tracks empirical recognition curves over
wide variations in the several other task variables is therefore significant.

5 Greedy Feature Learning

Several lessons from the analysis and experiments are that (1) larger repre-
sentations can lead to better recognition performance, (2) only those features
that are actually used should be included in a representation, (3) consider-
able statistical redundancy exists in a fully enumerated (or randomly drawn)
set of conjunctive features, which should be suppressed if possible, and
(4) features of low binding order, while potentially adequate to represent
isolated objects, are insufficient for veridical perception of scenes containing
multiple objects. In addition, we infer that different objects are likely to have
different representational requirements depending on their complexity and
that the composition of an ideal representation is likely to depend heav-
ily on the particular recognition task. Taken together, these points suggest
that a representation should be learned that includes higher-order features
only as needed. In contrast, blind enumeration of an ever-increasing number
of higher-order features is an expensive and relatively inefficient way to
proceed.

Standard network approaches to supervised learning could in princi-
ple address all of the points raised above, including finding appropriate
weights for features of various orders depending on their utility and help-
ing to decorrelate the input representation. However, the potential need to
acquire features of high order—so high that enumeration and testing of the
full cohort of high-order features is impractical—compels the use of some
form of explicit search as part of the learning process. The use of greedy, in-
cremental, or heuristic techniques to grow a neural representation through
increasing nonlinear orders is not new (e.g., Barron, Mucciardi, Cook, Craig,
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& Barron, 1984; Fahlman & Lebiere, 1990), though such techniques have been
relatively little discussed in the context of vision.

To cope with the many constraints that must be satisfied by a good visual
representation, we developed a greedy supervised algorithm for feature
learning that (1) selects the order in which features should be added to the
representation, and (2) selects which features added to the representation
should contribute to the minimal feature sets of each object in the database.
By differentiating the log probability uv = log(pv) = log

∏
i(1 − hi) with

respect to the hallucination probability of the ith object, we find that

duv

dhi
= −1

1− hi
, (5.1)

indicating that the largest multiplicative increments to pv are realized by
squashing the largest values of hi = (c/d)wi . Practically, this is achieved
by incrementing the w-values (i.e., growing the minimal feature sets) of
the most frequently hallucinated objects. The following learning algorithm
aims to do this in an efficient way:

1. Start with a small bootstrap representation. (We typically used 50 2-
grams found to be useful in pilot experiments.)

2. Present a large number of text “images” to the representation.

3. Collect hallucinated words—any word that was ever detected but not
actually present—in an input image.

4. For each hallucinated word and the input array that generated it,
increment a global frequency table for every n-gram (up to a maximum
order of 5 and diameter of 6) that is (i) contained in the hallucinated
word, (ii) not contained in the offending input, and (iii) not currently
included in the representation.

5. Choose the most frequent n-gram in this table of any order and diam-
eter, and add it to the current representation.

6. Build a connection from the newly added n-gram to any word detector
involved in a successful vote for this feature in step 4. Inclusion of this
n-gram in these words’ minimal feature sets will eliminate the largest
number of word hallucination events encountered in the set of training
images.

7. Go to 2.

We ran the algorithm using input arrays 50 characters in width (often con-
taining 10 or more words) and plotted the number of hallucinated words
(see Figure 4A) and proportion of input arrays causing hallucinations (see
Figure 4B) as a function of increasing representation size during learning.
The periodic ratcheting in the performance curves (most visible in the lower
curve of Figure 4B) was due to staging of the training process for efficiency
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reasons: batches of 1000 input arrays were processed until a fixed halluci-
nation error criterion of 1% was reached, when a new batch of 1000 random
input arrays was drawn, and so on. The envelope of the oscillating per-
formance curves provides an estimate of the true performance curve that
would result from an infinitely large training corpus. Learning was termi-
nated when the average initial error rate for three consecutive new training
batches fell below 1%. Given that this termination condition was typically
reached in fewer than 50 training epochs (consisting of 50,000 50-character
input images), no more than half the text database was visited by random
drawings of training-testing sets.

We found that for 50-character input arrays, the hallucination error rate
fell below 1% after the inclusion of 2287 n-grams in R. These results were
typical. The inferior performance of a simple unsupervised algorithm, which
adds n-grams to the representation in order of their raw frequencies in En-
glish, is shown in Figure 4AB for comparison (upper dashed curves). The
counts of total words hallucinated (see Figure 4A), with initial values in-
dicating many 10s of hallucinated words per input, can be seen to fall far
faster than the hallucination error rate (see Figure 4B), since a sentence was
scored as an error until its very last hallucinated word was quashed.

Figure 4: Facing page. Results of greedy n-gram learning algorithm using in-
put arrays 50 characters in width and a 50-element bootstrap representation.
Training was staged in batches of 1000 input arrays until the steady-state hal-
lucination error rate fell below 1%. (A) Growth of the representation is plotted
along the x-axis, and the number of words hallucinated at least once in the cur-
rent 1000-input training batch is plotted on the y-axis. The drop is far faster for
the greedy algorithm (lower curve) than for a frequency-based unsupervised
algorithm (upper curve). Unsupervised bootstrap representation also included
the 27 1-grams (i.e., individual letters plus space character) that were excluded
from the bootstrap representation used in the greedy learning run. Without these
1-grams, performance of the unsupervised algorithm was even more severely
hampered; with these 1-grams incorporated in the greedy learning runs, the w-
values of every object were unduly inflated. (B) Same as (A), but the y-axis shows
the proportion of input arrays producing at least one hallucination error. Jaggies
occur at transitions to new training batches each time the 1% error criterion was
reached. Asymptote is reached in this run after the inclusion of 2287 n-grams. (C)
A breakdown of learned representation showing relative numbers of n-grams of
each order and diameter. (D) The column height shows the minimal feature set
size after learning, that is, average number of n-grams feeding word conjunc-
tions for words of various lengths. The dark lower portion of the columns shows
initial counts based on full connectivity to bootstrap representation; the light up-
per portions show an increment in w due to learning. Nearly constant w values
after learning reflect the tendency of the algorithm to grow the smallest minimal
feature sets. The dashed line corresponds to one n-gram per letter in word.
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One of the most striking outcomes of the greedy learning process is that
the learned representation is heavily weighted toward low-order features,
as shown in Figure 4C. Thus, while the learned representation includes n-
grams up to order 5, the number of higher-order features required to remedy
perceptual errors falls off precipitously with increasing order—far faster
than the explosive growth in the number of available features at each order.
Quantitatively, the ratios of n-grams included inR to n-grams contained in
the word database for orders 2, 3, 4, and 5 were 0.42, 0.0095, 0.00017, and
0.0000055, respectively. The rapidly diminishing ratios of useful features to
available features at higher orders confirm the impracticality of learning
on a fully enumerated high-order feature set and illustrate the natural bias
in the learning procedure to choose the lowest-order features that “get the
job done.” The dominance of low-order features is of considerable practical
significance, since higher-order features are more expensive to compute, less
robust to image degradation, operate with lower duty cycles, and provide
a more limited basis for generalization. The relatively broad distribution of
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diameters of the learned feature set are also shown in Figure 4C for n-grams
of each order.

In spite of its relatively small size, it is likely that the n-gram represen-
tation produced by the greedy algorithm could be significantly compacted
without loss of recognition performance, by alternately pruning the least
useful n-grams from R (which lead to minimal increments in error rate)
and retraining back to criterion. However, such a scheme was not tried.

After learning to the 1% error criterion, a 50-character input array acti-
vated an average of 168 (7.3%) of the 2287 detectors inR, while the average
minimal feature set size for an individual word was 11.4. By comparison,
the initial c/d ratio for 50-character inputs projected onto the 50-element
bootstrap representation was a much less favorable 44%. Thus, a primary
outcome of the learning algorithm in this case involving heavy clutter is a
larger, more sparsely activated representation, which minimizes collisions
between input images and the feature sets associated with individual target
words. Further, the estimated r value from this run was 1.95, indicating sig-
nificantly less redundancy in the learned representation than was estimated
using seven-letter words (r = 3.45) in the fully enumerated 2-gram repre-
sentations reported in Figure 3; this is in spite of the fact that the learned
representation contained more than twice the number of active features as
the fully enumerated 2-gram representation.

The total height of each column in Figure 4D shows the w value—the
size of the minimal feature sets after learning for words of various lengths.
The dark lower segment of each column counts initial connections to the
word conjunctions from the 50-element bootstrap representation, while the
average number of new connections gained during learning for words
of each length is given by the height of each gray upper segment. Given
the algorithm’s tendency to expand the smallest minimal feature sets, the
w values for short words grew proportionally much more than those for
longer words, producing a final distribution of w values that was remark-
ably independent of word length for all but the shortest words. The w
values for one-, two-, and three-letter words were lower either because
they reached their maximum possible values (4 for one-letter words) or
because these words contained rarer features, on average, derived from a
relatively high concentration in the database of unpronounceable abbrevia-
tions, acronyms, and so forth. The dashed line indicates a minimal feature set
size equal to the number of letters contained in the word; the longest words
can be seen to depend on substantially fewer n-grams than they contain
letters.

The pressures influencing both the choice of n-grams for inclusion inR
and the assignment of n-grams to the minimal feature sets of individual
words were very different from those associated with a frequency-based
learning scheme. Thus, the features included inRwere not nececssarily the
most common ones, and the most commonly occurring English words were
not necessarily the most heavily represented.
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Table 3: First 10 n-Grams to Be Added to R During a
Learning Run with 50-Character Input Arrays, Initialized
with a 200-Element Bootstrap Representation.

Order of
Inclusion n-Gram

Relative
Frequency Cumulative %

1 [z ] 417 8
2 [ j] 14,167 55
3 [k* ] 39,590 71
4 [x ] 6090 42
5 [ki] 20,558 62
6 [ q] 8771 47
7 [ *v] 24,278 64
8 [ **z] 3184 31
9 [o*i] 37,562 70
10 [p*** ] 55,567 76

Note: The “ ” character represents the space character, and “*”
matches any character. A value of k in the cumulative distribution
column indicates that the total probability summed over all less
common features is k%.)

First, in lieu of choosing the most commonly occurring n-grams, the
greedy algorithm prefers features that are relatively rare in English text as a
whole but relatively common in those words most likely to be hallucinated:
short words and words containing relatively common English structure.
The paradoxical need to find features that distinguish objects from common
backgrounds, but do so as often as possible, leads to a representation con-
taining features that occur with moderate frequency. Table 3 shows the first
10 n-grams added to a 200-element bootstrap representation during learn-
ing in one experimental run. The features’ relative frequencies in English
are shown, which jump about erratically, but are mostly from the middle
ranges of the cumulative probability distribution for English n-grams. Most
of these first 10 features include a space character, indicating that failure
to represent elemental features properly in relation to object boundaries is
a major contributor to hallucination errors in this domain. Specifically, we
found that hallucination errors are frequently caused by the presence in the
input of multiple “distractor” objects that together contain most or all of the
features of a target object, for example, in the sense that national and vacation
together contain nearly all the features of the word nation. To distinguish na-
tion from the superposition of these two distractors requires the inclusion in
the representation of a 2-gram such as [n***** ] whose diameter of 7 exceeds
the maximum value of 6 arbitrarily established in the present experiments.

Having established that the features included in R are not keyed in a
simple way to their relative frequencies in English, we also observed that
no simple relation exists between word frequency and the per-word rep-
resentational cost, that is, the minimal feature set size established during
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Table 4: Correlation Between Word Frequency in
English and Minimal Feature Set Size After Learn-
ing Was Only 0.1.

Word
Relative

Frequency
Minimal Feature

Set Sizea

resting 100 25
leading 315 24

buffalo 188 8
unhappy 144 7

thereat 2 25
fording 1 23

bedknob 1 7
jackdaw 1 6

aNumber of n-grams inR that feed the word’s conjunc-
tion, that is, which must be present in order for a word to
be detected. Table shows examples of common and un-
common words with large and small minimal features
sets.

learning. In fact, if attention is restricted to the set of all words of a given
length, with nominally equivalent representational requirements, the corre-
lation between relative frequency of the word in English and its postlearning
minimal feature set size was only 0.1. Thus some common words require a
conjunction of many n-grams inR, while others require few, and some rare
words require many n-grams while others require few (see Table 4).

5.1 Sensitivity of the Learned Representation to Object Category Struc-
ture. Words are unlike common objects in that every word forms its own
category, which must be distinguished from all other words. In text world,
therefore, the critical issue of generalization to novel class exemplars can-
not be directly studied. To address this shortcoming partially and assess the
impact of broader category structures on the composition of the n-gram rep-
resentation, we modified the learning algorithm so that a word was consid-
ered to be hallucinated only if no similar—rather than identical—word was
present in the input when the target word was declared recognized. In this
case, similar was defined as different up to any single letter replacement—for
example, dog = {fog , dig , . . .}, but dog 6= {fig , og, dogs , . . .}. The result-
ing category structure imposed on words was thus a heavily overlapping
one in which most words were similar to several other words.4

4 This learning procedure, combined with the assumption that every word is repre-
sented by only a simple conjunction of features inR (disjunctions of multiple prototypes
per word were not supported), cannot guarantee that every word detector is activated
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Decrease in Representational Costs
for Broader, Overlapping Object Categories
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Figure 5: Breakdown of representations produced by two learning runs differ-
ing in breadth of category structure. Fifty-character input arrays were used as
before to train to an asymptotic 1% error criterion, this time beginning with a
200-element bootstrap representation. Run with tolerance = 0 was as in Figure 4,
where a hallucination was scored whenever a word’s minimal feature set was
activated, but the word was not identically present in the input. In a run with tol-
erance= 1, a hallucination was not scored if any similar word was present in the
input, up to a single character replacement. The latter run, with a more lenient
category structure, led to a representation that was significantly smaller, since
it was not required to discriminate as frequently among highly similar objects.

The main result of using this more tolerant similarity metric during learn-
ing is that fewer word hallucinations are encountered per input image, lead-
ing to a final representation that is smaller by more than half (see Figure 5).
In short, the demands on a conjunctive n-gram representation are lessened
when the object category structure is broadened, since fewer distinctions
among objects must be made.

5.2 Scaling of Learned Representation with Input Clutter. As is con-
firmed by the results of Figure 3, one of the most pernicious threats to a spa-
tially invariant representation is that of clutter, defined here as the quantity
of input material that must be simultaneously processed by the representa-

in response to any of the legal variants of the word. Rather, the procedure allows a word
detector to be activated by any of the legal variants without penalty.
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Table 5: Measured Average Values of c, d, and w
and Calculated Values of r in a Series of Three
Learning Runs with Input Clutter Load Increased
from 25 to 75 Characters, Trained to a Fixed Error
Criterion of 3%.

Input Width c d w r

25 55 816 7.6 1.45
50 152 1768 10.7 1.85
75 253 2634 12.8 2.11

Note: The 50-element bootstrap representation was used
to initialize all three runs. Equation 4.3 was used to find
values of r for each run, such that with w → w/r, the
measured values of c and d, and N = 44,414, a 3% error
rate was predicted.

tion. The difficulty may be easily seen in equation 4.3, where an unopposed
increase in the value of c leads to a precipitous drop in recognition perfor-
mance. On the other hand, equation 4.3 also indicates that increases in c can
be counteracted by appropriate increases in d and w, which conserve the
value of (c/d)w.

To examine this issue, we systematically increased the clutter load in a
series of three learning runs from 25 to 75 characters, training always to a
fixed 3% error criterion, and recorded for each run the postlearning values
of c, d, and w. Although the WSJ database contained a wide range of word
sizes (from 1 to 20 characters in length), the measurement of a single value
for w averaged over all words was justified since, as shown in Figure 4D,
the learning algorithm tended to equalize the minimal feature set sizes for
words independent of their lengths. Under the assumption of uniformly
probable, statistically independent features in the learned representations,
the value of h = (c/d)w for all three runs should be equal to ∼ 7 × 10−7,
the value that predicts a 3% error rate for a 44,414-object database using
equation 4.3. However, corrections (w → w/r) were needed to factor out
unequal amounts of statistical redundancy in representations of various
sizes, where larger representations contained more redundancy.

The measured values of c, d, and w and the empirically determined r
values are shown for each run in Table 5. As in the runs of Figure 3, redun-
dancy values were again systematically greater for the larger representa-
tions generated, and the redundancy values calculated here for the learned
representation were again significantly smaller than those seen for the fully
enumerated 2-gram representation.

6 Discussion

Using a simple analytical model as a taking-off point and a variety of sim-
ulations in text world, we have shown that low-ambiguity perception in un-



Minimizing Binding Errors 271

segmented multiobject scenes can occur whenever the probability of fully
activating any single object’s minimal feature set, by a randomly drawn
scene, is kept sufficiently low. One prescription for achieving this condi-
tion is straightforward: conjunctive features are mined from hallucinated
objects until false-positive recognition errors are suppressed to criterion.
Even in a complex domain containing a large number of highly similar ob-
ject categories and severe background clutter, this prescription can produce
a remarkably compact representation. This confirms that brute-force enu-
meration of large families or, worse, all high-order conjunctive features—the
combinatorial explosion recognized by Malsburg—is not inevitable.

The analysis and experiments reported here have provided several in-
sights into the properties of feature sets that support hallucination-proof
recognition and into learning procedures capable of building these feature
sets:

1. Efficient feature sets are likely to (1) contain features that span the
range from very simple to very complex features, (2) contain relatively
many simple features and relatively few complex features, (3) empha-
size features that are only moderately common (giving a representa-
tion that is neither sparse nor dense) in response to the conflicting
constraints that features should appear frequently in objects but not
in backgrounds also composed of objects, and (4) in spatial domains,
emphasize features that encode the relations of parts to object bound-
aries.

2. An efficient learning algorithm works to drive toward zero, and there-
fore to equalize, the false-positive recognition rates for all objects con-
sidered individually. Thus, frequently hallucinated objects—objects
with few parts or common internal structure, or both—demand the
most attention during learning. Two consequences of this focus of ef-
fort on frequently hallucinated objects are that (1) the average value
of w, the size of the minimal feature set required to activate an ob-
ject, becomes nearly independent of the number of parts contained
in the object, so that simpler objects are relatively more intensively
represented than complex objects, and (2) among objects of the same
part complexity, the minimal conjunctive feature sets grow largest for
objects containing the most common substructures, though these are
not necessarily the most common objects. A curious implication of
the pressure to represent objects heavily that are frequently halluci-
nated is that the backgrounds in which objects are typically embedded
can strongly influence the composition of the optimal feature set for
recognition.

3. The demands on a visual representation are heavily dependent on the
object category structure imposed by the task. Where object classes are
large and diffuse, the required representation is smaller and weighted
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to features of lower conjunctive order, whereas for a category structure
like words, in which every object forms its own category that must
often be distinguished from a large number of highly similar objects
(e.g., cat from cats , cut , rat ), the representation must be larger and
depend more heavily on features of higher conjunctive order.

6.1 Further Implications of the Analytical Model. Equation 4.3 pro-
vides an explicit mathematical relation among several quantities relating
to multiple-object recognition. Since the equation assumes statistical inde-
pendence and uniform activation probability of the features contained in
the representation, neither of which is a valid assumption in most practical
situations, we were unable to predict recognition errors using measured
values for d, c, and w. However, we found that error rates in each case
examined could be fitted using a small correction factor for statistical re-
dundancy, which uniformly scaled d, c, and w and whose magnitude grew
systematically for larger collections of features activated by larger—more
redundant—units of text. From this we conclude that equation 4.3 at least
crudely captures the quantitative trade-offs governing recognition perfor-
mance in receptive-field-based visual systems.

One of the pithier features of equation 4.3 is that it provides a criterion for
good recognition performance: (c/d)w ¿ 1/N. The exponential dependence
on the minimal feature set size, w, means that modest increases in w can
counter a large increase in the number of object categories, N, or unfavorable
increases in the activation density, c/d, which could be due to either an
increase in the clutter load or a collapse in the size of the representation. For
example, using roughly the postlearning values of c/d ∼ 0.07 and r ∼ 2 from
the run of Figure 4, we find that increasing w from 10 to 12 can compensate
for a more than 10-fold increase N, or a nearly 60% increase in the c/d ratio,
while maintaining the same recognition error rate.

The first-order expansion of equation 4.3 also states that recognition er-
rors grow as the wth power of c/d, where w is generally much larger than
1. A visual system constructed to minimize hallucinations therefore abhors
uncompensated increases in clutter or reduction in the size of the repre-
sentation. These effects are exactly those that have motivated the various
compensatory strategies discussed in section 1.

The abhorrence of clutter generates strong pressure to invoke any read-
ily available segmentation strategies that limit processing to one or a small
number of objects at a time. For example, cutting out just half the visual ma-
terial in the input array when w/r = 5, as in the above example, knocks down
the expected error rate by a factor of 32. The pressure to reduce the number
of objects simultaneously presented to the visual system could account in
part for the presence in biological visual systems of (1) a fovea, which leads
to a huge overrepresentation of the center of fixation and marginalization
of the surround, (2) covert attentional mechanisms, which selectively up-
or down-modulate sensitivity to different portions of the visual field, and
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(3) dynamical processes that segment “good” figures (in the Gestalt sense)
from background.

The second pressure involved in maintaining a low c/d ratio involves
maintaining a visual representation of adequate size, as measured by d.
One situation in which this is particularly difficult arises when the task
mandates that objects be distinguished under excessively wide ranges of
spatial variation, an invariance load that must be borne in turn by each of
the individual feature detectors in the representation. For example, consider
a relatively simple task in which the orientation of image features is a valid
cue to object identity, such as a task in which objects usually appear in a
standard orientation. In this case a bank of several orientation-specific vari-
ants of each feature can be separately maintained within the representation.
In contrast, in a more difficult task that requires that objects be recognized in
any orientation, each bank of orientation-specific detectors must be pooled
together to create a single, orientation-invariant detector for that conjunc-
tive feature. The inclusion of this invariance in the task definition can thus
lead to an order-of-magnitude reduction in the size of the representation,
which, unopposed could produce a catastrophic breakdown of recogni-
tion according to equation 4.3. As a rule of thumb, therefore, the inclusion
of an additional order-of-magnitude invariance must be countered by an
order-of-magnitude increase in the number of distinct feature conjunctions
included in the representation, drawn from the reservoir of higher-order
features contained in the objects in question. The main cost in this approach
lies in the additional hardware, requiring components that are more numer-
ous, expensive, prone to failure, and used at a far lower rate.

6.2 Space, Shape, Invariance, and the Binding Problem. While one em-
phasis in this work has been the issue of spatial invariance in a visual rep-
resentation, we reiterate that the mathematical relation expressed by equa-
tion 4.3 knows nothing of space or shape or invariance, but rather views
objects and scenes as collections of statistically independent features. What,
then, is the role of space?

From the point of view of predicting recognition performance and with
regard to the quantitative trade-offs discussed here, we can find no special
status for worlds in which spatial relations among parts help to distinguish
objects, since spatial relations may be viewed simply as additional sources of
information regarding object identity. (Not all worlds have this property; an
example is olfactory identification.) Further, the issue of spatial invariance
plays into the mathematical relation of equation 4.3 only indirectly, in that
it specifies the degree of spatial pooling needed to construct the invariant
features included in the representation; once again, the details relating to
the internal construction of these features are not visible to the analysis.
In this sense, the spatial binding problem, which appears at first to derive
from an underspecification of the spatial relations needed to glue an object
together, in fact reduces to the more mundane problem of ambiguity arising
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from overstimulation of the visual representation by input images—that is,
a c/d ratio that is simply too large. The hallucination of objects based on
parts contained in background clutter can thus occur in any world, even
one in which there is no notion of space (e.g., matching bowls of alphabet
soup).

However, the fact that object recognition in real-world situations typi-
cally depends on spatial relations between parts and the fact that recognition
invariances are also very often spatial in nature together strongly influence
the way in which a visual representation based on spatially invariant, recep-
tive fields can be most efficiently constructed. In particular, many economies
of design can be realized through the use of hierarchy, as exemplified by the
seminal architecture of Fukushima et al. (1983). The key observation is that
a population of spatially invariant, higher-order conjunctive features gen-
erally shares many underlying processing operations. The present analysis
is, however, mute on this issue.

6.3 Relations to “Real” Vision. The quantitative relations given by equa-
tion 4.3 cast the problem of ambiguous perception in cluttered scenes in the
simple terms of set intersection probabilities: a cluttered scene activates c
of the d feature detectors at random and is correctly perceived with high
probability as long as the set of c activated features only rarely includes all w
features associated with any one of the N known objects. The analysis is thus
heavily abstracted from the details of the visual recognition problem, most
obviously ignoring the particular selectivites and invariances that parame-
terize the detectors contained in the representation. On the other hand, the
analysis makes it possible to understand in a straightforward way how the
simultaneous challenges of clutter and invariance conspire to create bind-
ing ambiguity and the degree to which compensatory increases in the size
of the representation, through conjunctive order boosting, can be used to
suppress this ambiguity. These basic trade-offs have operated close to their
predicted levels in the text world experiments carried out in this work, in
spite of violations of the simplifying assumptions of feature independence
and equiprobability.

Since the application of our analysis to any particular recognition prob-
lem involves estimating the domain-specific quantities c, d, w, and N, we
do not expect predictions relating to levels of binding ambiguity or recogni-
tion performance to carry over directly from the problem of word recogni-
tion in blocks of symbolic text to other visual recognition domains, such as
viewpoint-independent recognition of real three-dimensional objects em-
bedded in cluttered scenes.

On the other hand, we expect the basic representational trade-offs to per-
sist. The most important way that recognition in more realistic visual do-
mains differs from recognition in text world lies in the invariance load, which
in most interesting cases extends well beyond simple translation invariance.
Basic-level object naming in humans, for example, is largely invariant to
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translation, rotation, scale, and various forms of distortion, occlusion, and
degradation—invariances that persist even for certain classes of nonsense
objects (Biederman, 1995). Following the logic of our probabilistic analysis,
the daunting array of invariances that must be maintained in this and many
other natural visual tasks would seem to present a huge challenge to biolog-
ical visual systems. In keeping with this, performance limitations in human
perception suggest that our visual systems have responded in predictable
ways to the pressures of the various tasks with which they are confronted; in
particular, recognition in a variety of visual domains appears to include only
those invariances that are absolutely necessary and those for which simple
compensatory strategies are not available. For example (1) recognition is
restricted to a highly localized foveal acceptance window for text or other
detailed figures, where by “giving up” on translation invariance, this sub-
stream of the visual system frees hardware resources for the several other
essential invariances that cannot be so easily compensated for (e.g. size, font,
kerning, orientation, distortion), (2) face recognition operates under strong
restrictions on the image-plane oriention and direction of lighting of faces
(Yin, 1969; Johnston, Hill, & Carman, 1992), a reasonable compromise given
that faces almost always present themselves to our visual systems upright
and with positive contrast and lighting from above, and (3) unlike the case
for common objects, reliable discrimination of complex three-dimensional
nonsense objects (e.g., bent paper clips, crumpled pieces of paper) is re-
stricted to a very limited range of three-dimensional orientations in the
vicinity of familiar object views (Biederman & Gerhardstein, 1995), though
this deficiency can be overcome in some cases by extensive training (Logo-
thetis & Pauls, 1995). When viewed within our framework, the exceptional
difficulty of this latter task arises from the need for, or more precisely a
lack of, the very large number of very-high-order conjunctive features—
essentially full object views locked to specific orientations (see Figure 1B)—
that are necessary to support reliable viewpoint-invariant discrimination
among a large set of objects with highly overlapping part structures. In
summary, the primate visual system manifests a variety of domain-specific
design compromises and performance limitations, which can be interpreted
as attempts to achieve simultaneously the needed perceptual invariances,
acceptably low levels of binding ambiguity, and reasonable hardware costs.

In considering the astounding overall performance of the human visual
system in comparison to the technical state of the art, it is also worth noting
that human recognition performance is based on neural representations
that could contain tens of thousands of task-appropriate visual features
(extrapolated from the monkey; see Tanaka, 1996) spanning a wide range
of conjunctive orders and finely tuned invariances.

In continuing work, we are exploring further implications of the trade-
offs discussed here in relation to the neurobiological underpinnings of spa-
tially invariant conjunctive receptive fields in visual cortex (Mel, Ruder-
man & Archie, 1998) and on the development of more efficient supervised
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and unsupervised hierarchical learning procedures needed to build high-
performance, task-specific visual recognition machines.
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