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Visual Statistical Learning (VSL) is classically investigated in a restricted format, either as temporal or spatial
VSL, and void of any effect or bias due to context. However, in real-world environments, spatial patterns unfold
over time, leading to a fundamental intertwining between spatial and temporal regularities. In addition, their
interpretation is heavily influenced by contextual information through internal biases encoded at different scales.
Using a novel spatio-temporal VSL setup, we explored this interdependence between time, space, and biases by
moving spatially defined patterns in and out of participants’ views over time in the presence or absence of
occluders. First, we replicated the classical VSL results in such a mixed setup. Next, we obtained evidence that
purely temporal statistics can be used for learning spatial patterns through internal inference. Finally, we found
that motion-defined and occlusion-related context jointly and strongly modulated which temporal and spatial
regularities were automatically learned from the same visual input. Overall, our findings expand the concep-
tualization of VSL from a mechanistic recorder of low-level spatial and temporal co-occurrence statistics of single
visual elements to a complex interpretive process that integrates low-level spatio-temporal information with

higher-level internal biases to infer the general underlying structure of the environment.

1. Introduction

Understanding how we learn representations of the significant
structures in our sensory environment is one of the key challenges in
uncovering how the mind works. The field of Statistical Learning (Aslin,
2017; Santolin & Saffran, 2018) addresses this question directly across
various sensory modalities (Isbilen & Christiansen, 2022; Turk-Browne,
2012), most prominently in vision (Fiser & Lengyel, 2022). In visual
research, the field is traditionally divided into spatial and temporal Vi-
sual Statistical Learning (sVSL and tVSL, respectively). In sVSL, the
statistical regularities to be learned are found exclusively in the spatial
relationships of simultaneously presented elements within a scene, with
no persistent temporal structure across the sequence of scenes (Fiser &
Aslin, 2001) (Fig. 1 A). In contrast, in tVSL, statistical regularities can be
acquired only through temporal associations between elements of
sequentially presented scenes, as each individual scene consists of a
single element and thus carries no meaningful spatial information (Fiser
& Aslin, 2002a; Kirkham, Slemmer, & Johnson, 2002) (Fig. 1B).

While the separate investigation of spatial and temporal regularities
is useful for gaining an initial understanding of representational
learning, it stands in contrast to real-world experience, where spatial
and temporal regularities are always intertwined. Indeed, several
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studies have suggested that humans interpret visual input through a
combined processing of spatial and temporal information (Gepshtein &
Kubovy, 2000; Hochberg, 1968; Johansson, 1973; Rolls, 2012; Stone,
1998; Wallis & Rolls, 1997). Moreover, spatio-temporal regularity and
stability have been consistently cited as defining features of objects and
object cognition (Baillargeon, 2008; Piaget, 1954). If representational
learning does, in fact, depend significantly on the interaction between
spatial and temporal regularities, then relying on experimental ap-
proaches that isolate either domain risks seriously limiting our under-
standing of how such learning functions.

The processing of spatial and temporal statistics interacts not only
with each other during learning but also with various inherent biases
represented in the brain. These biases reflect expectations based on both
momentary factors (Wade, Spillmann, & Swanston, 1996) and long-term
knowledge (Sun & Perona, 1998), shaped by actual sensory input and
extensive experience. They can influence both ongoing perception
(Carlson, 1962) and learning (Liu, Dolan, Kurth-Nelson, & Behrens,
2019). Yet, very few studies have explored the interaction between
ongoing visual statistical learning (VSL) and these inherent biases (Lee,
Liu, & Lu, 2021).

The present work addresses the two aforementioned issues -the
synergy between spatial and temporal visual statistical learning (sVSL
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and tVSL), and the interaction between VSL and internal biases- by
focusing on three intertwined questions.

1. How primary is the strength of statistical information (and its
accompanying noise) in determining the outcome of statistical
learning? Existing studies in the field often limit spatial co-
occurrence and temporal transitional probabilities to perfect corre-
lations, with only anecdotal reports on learning under imperfect,
noisy conditions.

2. At what level of abstraction can the interchange between sVSL and
tVSL occur? For example, can humans extract spatial structures by
inferring them from purely temporal evidence -without ever directly
observing those spatial structures- or are spatial and temporal
learning processes kept separate until relatively late stages of the
knowledge representational hierarchy?

3. To what extent do inferential biases originating from higher-level
knowledge -such as the general direction of stimulus motion or the
presence of specific occlusions- reshape which statistical patterns are
actually learned during statistical learning, even when all are equally
available?

To investigate these questions, we developed a new spatio-temporal
VSL (stVSL) paradigm, in which spatially defined patterns (i.e., fixed
spatial arrangements of novel shapes) move in and out of the observer’s
view (Fig. 1C). This paradigm allows for the systematic manipulation or
removal of temporal and spatial statistics under different conditions
involving motion-induced or occlusion-based biases, enabling direct
comparisons of learning outcomes across scenarios.

Using this paradigm across seven experiments, we obtained three
main results that clarify the process of complex statistical learning in
context. First, as a baseline, we confirmed that participants can learn the
underlying static spatial structure of an environment even when it is
embedded within the dynamic spatio-temporal input of our experi-
mental design. Second, we found that introducing, first, a temporal
structure and, next, a perceived coherent direction of movement across
subsequent scenes progressively increases the strength of statistical
learning of spatial co-occurrences. Third, by adding occlusion to the
dynamic scenes with a motion-direction bias, we observed that the
complex interplay between temporal and occlusion-based biases does
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not merely enhance spatial statistical learning; it also: a) jointly alters
which statistics are learned; b) enables purely temporal statistics to give
rise to the learning of spatial structures; and c) goes beyond influencing
choice preferences to actively boost the learning of statistics that are
congruent with the configuration of biases.

Overall, these results suggest that visual statistical learning does not
simply keep tab of low-level spatial and temporal co-occurrence statis-
tics in the scenes and sums them up but acts as a sophisticated inte-
grative process that combines low-level spatial-temporal information
and various higher-level internal biases to develop a compatible internal
representation of the underlying structure of the environment.

2. Rationale of the experimental paradigm

In nature, spatial and temporal statistics are typically present in a
dynamically intertwined manner. For example, as animals move, their
sub-parts (limbs, head, torso, etc.) change their relative positions to one
another, and each part changes its appearance over time as the animal
changes its global position. Yet, each part, as well as the animal as a
whole, can be reliably identified across time. Moving rigid objects also
provide the observer with temporal structure that can be integrated to
comprehend a form which, in principle, can be described purely in
spatial terms. For instance, viewing an object from different angles and
integrating successive visual snapshots can help infer its three-
dimensional shape. This latter problem has been explored using the
“trace learning rule” (Wallis & Rolls, 1997), which relies critically on the
temporal integration of successive spatial patterns to support the infer-
ence of invariant, purely spatial object structures. While such scenarios
are reduced in complexity, and thus easier to control in experimental
settings, they still preserve the essential elements of combined spatial
and temporal statistics. The present study investigates this latter type of
spatio-temporal processing of visual input, where temporal coherence is
used to extract stable spatial patterns.

In the classical spatial VSL studies, the stimuli were individual NxN
grid-based scenes with simple shapes in some of the grid cells, and these
scenes were presented in a randomized fashion during familiarization
(Fiser & Aslin, 2001, 2002b, 2005; Lee et al., 2021). The simple shapes
were positioned within the scenes according to some rules of co-
occurrence of shape pairs, triplets or quadruplets defined by the
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Fig. 1. - VSL paradigms: Panel (a) shows the standard spatial visual statistical learning setup. Panel (b) shows the standard temporal visual statistical learning setup.
Panel (c) shows the new spatio-temporal visual statistical learning setup (stVSL). There, the visual scenes are conceptualized as part of a larger visual environment,
populated with the pairs of the inventory. Participants only see a 3 x 3 snapshot at a given time, akin to the 3 x 3 scene used in spatial VSL. However, the following
snapshot is given by moving the shapes under the aperture by one grid cell, making the succession of snapshots temporarily dependent on each other, as compared to
them being identical and independently distributed (i.i.d.) as in the spatial VSL setup.
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underlying structure of the environment. These individual scenes can be
considered as randomly selected snapshots or glimpses of a small
segment of a large grid-like environment populated with the spatial
patterns defined by the underlying pair structures (Fig. 1 A). By gener-
alizing this concept, we designed a new spatio-temporal VSL paradigm,
in which instead of sampling random small scenes from this environ-
ment, observers viewed a small part of a large environment built on the
underlying pairs structure through an NxN-sized grid-shaped aperture
while the large landscape kept shifting around under the aperture in the
horizontal or vertical direction with a discrete step size of one cell and
paused a bit after each step (Fig. 1C). This stimulus presentation can be
conceptualized as if many scenes of the classical sVLS were laid down
next to each other to make up a large surface representing the envi-
ronment, and observers passively but dynamically explored this envi-
ronment experiencing both dynamic and occlusion-based effects beyond
mere statistical co-occurrences of shape items.

Due to the periodic shifting of the environment under the aperture
with a step size of one cell, observers saw not only the complete 3-by-3
tiling scenes themselves through the aperture but also, in two-thirds of
the time, partial mixes of two such scenes. These cases led to partial
presentations of the constituting shape pairs of the inventory when only
one element of some pairs was visible. These partial presentations
created noise as they introduced extra uncertainty about the true un-
derlying structure of the input by providing evidence against the
spatially fixed co-occurrence of the two elements of the pair. At the same
time, this uncertainty could be counterbalanced by hypothesizing that
observers make unconscious inferences based on the overall temporal
coherence of the entire scene under the aperture over time due to the
movement: “Although I see one half of a pair right now, this is because of
the restriction of the aperture and the other half of that pair will reliably
become visible after the next movement”. Thus, the paradigm allows
testing the intricate three-way interactions between information about
temporal and spatial statistics and the effects of additional constraints
such as the edge of the aperture, occlusion, and motion coherence.

Using this paradigm, we conducted seven experiments in which we
systematically varied: (1) the amount of uncertainty in the input
regarding the underlying spatial and temporal structure of the stimuli,
and (2) the strength of the inductive bias due to perceived global motion
and the occlusion of shape elements in the scene -thereby assessing the
effects and interactions between these factors during statistical learning
(Table 1).

3. Experiments 1a,b: Extracting the underlying spatial
structures from static and dynamic scenes

The interaction between spatial and temporal statistical structures
during visual learning is unclear since adding temporal changes to the
display, even if they are structured, could both help and hinder the
process of extracting the underlying spatial structure of the presented
scenes. Specifically, the previously discussed partial presentation of the
pairs during transitions -which define the underlying structure in this
paradigm- may impede statistical learning, as it reduces the spatial
conditional probability between elements of each pair. To clarify the
nature of this interaction within the standard VSL paradigm, we tested
participants in the online version of the new stVSL paradigm in Exper-
iment 1a using the same training structure and tests as in the classic sVSL
study (Fiser & Aslin, 2001), while letting the scenes unfold over time.
For controlled comparison, we also directly replicated online the clas-
sical experiment of Fiser and Aslin (2001) (Experiment 1b).

3.1. Participants

40 participants gave informed consent prior to the experiments. 20
(6 female, mean age 25, SD = 6.5) for Experiment 1a and 20 (7 female,
mean age = 24.7, SD = 5.5) for Experiment 1b. The sample size was
based on the original study by Fiser and Aslin (2001). Participants were
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Table 1
Summary of experiments in the present study. Conditions in the “Presentation
Mode” column: i.i.d. — “Independent and Identically Distributed” condition,

showing a sequence of individual scenes made of a 3 x 3 grid, with shapes in
some grid cells. Scenes have abrupt onsets and offsets, with no relationship
between the content of consecutive scenes. Temporal — Same as i.i.d., but
consecutive scenes depict what would be visible when the 3 x 3 aperture shifts
one grid step across an underlying larger field tiled with 3 x 3 small scenes.
Temporal + Animation — Same as Temporal, but instead of abrupt onsets and
offsets, an animation simulates the continuous shift of the underlying field.
Conditions in the “Attention Check” column: + indicates that Attention check is
applied during familiarization. — indicates that Attention check is not applied
during familiarization.

Experiment  Purpose/Question Presentation Mode Attention
check
a Proof-of-Concept of stVSL Temporal + B
paradigm Animation
1 . - .
b Online replication of basic iid 4
VSL
a The effect of spatial noise, Temporal + _
temporal coherence, and Animation
2 b perceived motion in stVSL Temporal -
¢ Global motion bias iid. *
The limit of learning spatial Temporal +
a structure from temporal Animation + +
3 information Occlusion
b Interaction of global motion Temp O'r al + +
Occlusion

and occlusion biases

recruited via prolific.co and received £ 2.5 for their contribution. For all
experiments reported in this paper, all participants conducted the
experiment at home on a laptop or desktop computer, and all partici-
pants had normal or corrected-to-normal vision. All experiments re-
ported in this paper were approved by the Hungarian United Ethical
Review Committee for Research in Psychology (EPKEB).

3.2. Materials

The stimuli were taken from (Fiser & Aslin, 2001) and consisted of 12
abstract black shapes on a white background. The shapes were grouped
to form six pairs (two horizontal, two vertical, and two diagonal)
randomly for each participant. 144 scenes were created by placing one
horizontal, one vertical, and one diagonal pair in a 3 x 3 grid without
any segmentation cues. The maximum horizontal and vertical extension
of each shape was 50 % of the size of one grid cell.

Due to the nature of online experiments, the visual angle of the in-
dividual shapes was not exactly the same for all participants, as they
used different devices with varying screen sizes and resolutions. How-
ever, since the image size was fixed (the 3 x 3 grid extended over 600 x
600 pixels and was centered in the middle of the computer screen) with
the viewing distance varying between 40 and 80 cm, and the stimuli
were simple black shapes clearly presented in the middle of white cells,
the variations in the conditions of the individual setups did not signifi-
cantly modulate the visibility of the perceptual input.

3.3. Procedure

Participants in both experiments first passively observed scenes
during the familiarization phase before completing the test phase. For
the familiarization phase, participants received only minimal in-
structions, stating that they should pay attention to what was happening
on the screen as they would be asked simple questions about it later. The
pair structure of the scenes was not mentioned.

In Experiment 1a, the 3 x 3 scenes moved in and out of the screen by
one row or column at a time, depending on the direction of the motion,
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starting from one completely visible scene in the first frame of the
experiment. At each step, a segment of a new scene moved in, and a
segment of the old one moved out. Since there were no segmentation
cues at the scene boundaries between the abutting scenes of the un-
derlying plane, the participants perceived the entire sequence as one
continuous stream of randomly scattered shapes jointly changing the
direction of movement at different “random” points in time. The change
in the direction of movement was not truly “random” but always
occurred at the multiples of three (after 6, 9, or 12 steps), so that at no
point in the movie there were parts of more than two underlying 3 x 3
scenes shown in the aperture. Each movement took 0.5 s and was
animated as a constant speed translation along the horizontal or vertical
axis, while the image stood still for two seconds between two successive
movements. The 0.5-s duration for translation was fast enough so that
even if participants could not perceive the actual shapes, they could
automatically track their position during the translation. No two iden-
tical pairs would ever be visible simultaneously within the aperture.
Participants saw left, right, up, and down movements with occasional
changes of the movement direction from one direction to one of the
perpendicular directions (e.g., from horizontal move to either up or
down) but never a complete reversal of direction (e.g., from up to
down). Overall, all participants saw left, right, up, and down movements
for the same number of steps.

In Experiment 1b, participants saw the scenes sequentially, each for
two seconds with a one-second inter-trial interval, and the order of
scenes was randomly chosen for each participant. In this “Independent
and Identically Distributed” (i.i.d) condition, there is no link between
the content of two consecutive scenes. Since the static input in Experi-
ment 1b could be less engaging than the dynamic input in Experiment
la, a simple attention-check feature was included in Experiment 1b to
ensure that participants remained engaged with the task. In an
attention-check trial, text appeared in the central cell of the grid,
prompting participants to press the spacebar. Simultaneously, five black
squares appeared in randomly chosen cells of the grid. The attention
check disappeared every 2 s and reappeared after 0.5 s. The number of
times the attention check was shown before the space bar was pressed
was recorded as the indicator of the participant’s attention level.

Individual scenes were seen for a longer duration in Experiment 1a
than in 1b since they moved in and out of sight over several steps.
Therefore, we used only half of the original 144 scenes (balanced for pair
frequency and co-occurrence) in Experiment 1a. The amount of expo-
sure was still not entirely identical in the two experiments as the
familiarization phase took nine minutes vs. seven minutes and 12 s in
Experiment 1a and Experiment 1b, respectively. In addition to the dif-
ference in the number of scenes and exposure durations, two other as-
pects prevented a direct comparison between the two experiments: the
full vs. full+partial presentation of each scene and the added effect of
motion in Experiment 1a. However, all these differences were inconse-
quential as the goal of the study was not to compare the two setups
quantitatively but to test whether participants can implicitly learn the
pair structures in the dynamic stVSL setup.

The test phase was identical for both experiments. It consisted of 36
2-alternative forced choice (2AFC) trials. In each trial, participants saw a
real pair and a foil pair after each other (randomized order, two-second
presentation, and one-second inter-stimulus-interval) and indicated
which of the two was more familiar based on the familiarization phase
by pressing “1” or “2” on the keyboard. Overall, six foil pairs, two
horizontal, two vertical, and two diagonal ones, were created by re-
combining shapes from different pairs of the familiarization phase.
Each real pair was tested once with each foil pair. After the test phase,
participants answered a series of open questions to assess their explicit
knowledge of the pair structure and their previous experience with
similar experiments (see Supplementary Materials for details).

Beyond the standard frequentist statistics analyses, we used Bayes
Factors (BF) in this paper to assess the strength of the observed effects.
These BFs were calculated by using the BayesFactor R package (Rouder,
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Morey, Speckman, & Province, 2012). Following a conservative
approach, we counted our results as significant if our criteria for both p-
values (<0.05) and BF (>3) were met.

3.4. Results and discussion

For both experiments, two participants were excluded for gaining
verbalizable explicit knowledge of the pairs by the end of the practice
session, since we were interested in implicit learning of the structures.
The remaining participants in both experiments performed significantly
above the chance level of 50 % (Experiment 1la: M(SE) = 57.7(2.4), t
(17) =3.18,p = 0.005, d = 0.75, BF = 8.8. Experiment 1b: M(SE) = 56.5
(2.5), t(17) = 2.60, p = 0.019, d = 0.61, BF = 3.2. see Fig. 2).

These results show that participants successfully learned the spatial
structure in both the classic i.i.d. and the novel spatio-temporal VSL
setup, confirming that despite the increased noise due to the partial
presentation of scenes and the effect of motion, participants could
implicitly learn the pair structures in the dynamic stVSL setup. This
confirmatory result is significant because the general finding in the
literature is that statistical learning is very sensitive to the conditional
probabilities between elements within a chunk: even small deviations
from Prob(1.0) can severely affect learning. As Experiment 1b was a
direct online replication of the previously lab-based spatial VSL exper-
iment by (Fiser & Aslin, 2001), the close similarity between the results of
Experiment 1b and that of the original study also suggests that the sVSL
paradigm can be successfully transferred to an online environment for
data collection.

4. Experiments 2a-c: The role of temporal coherence and
perceived motion in learning spatial visual structures

After demonstrating in Experiment 1a that learning is possible in the
spatio-temporal VSL (stVSL) setup, we asked how the different aspects of
the input information contributed to learning in this paradigm. In
Experiment 2a, we introduced pairs with different levels of spatial noise
(quantified by the number of partial presentations) to the stVSL para-
digm to test whether the strength of learning is a simple function of the
amount of this type of noise. In Experiment 2b, we removed the ani-
mation of motion while leaving the temporal coherence of subsequent
frames intact to assess the effect of temporal coherence across scenes in
the absence of obvious motion cues. In Experiment 2c, we eliminated
both motion cues and temporal coherence to provide experimental ev-
idence for their joint effect on learning spatial patterns.
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Fig. 2. - Results of Experiments 1a and 1b. The y-axis represents the participants’
mean performance on the 2-alternative forced choice (2AFC) trials, used as the
measure of learning of pairs embedded in the familiarization stream. Error bars
represent the standard error. The dotted line indicates the chance level of 50 %.
Stars represent the significance of the difference from chance. * p < 0.05; ** p
< 0.01.
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4.1. Participants

267 participants gave informed consent prior to the experiments. 88
(39 female, mean age 26.9, SD = 8) for Experiment 2a, 89 (31 female,
mean age 33.4, SD = 10.9) for Experiment 2b, and 90 (30 female, mean
age 26.2, SD = 8.9) for Experiment 2c. The sample size was chosen to
achieve a power of about 80 % for three parallel comparisons (i.e., alpha
= 0.166) assuming medium effect sizes (cohen’s d = 0.5) and rounded
up to account for expected exclusions. Participants were recruited via
prolific.co and received £2.5.

In Experiment 2a, three participants were excluded from the analysis
due to response bias, and another 15 participants were removed for
acquiring explicit knowledge of the structure of the task. Response bias
was defined as the proportion with which participants used one of the
two response keys (“1” and “2”), and participants who were 2.5 SD away
from the mean were excluded. In Experiment 2b, six participants were
removed from the analysis due to response bias, one participant was
removed due to failing the attention checks (response time to attention
check >3 SD), and 10 participants were removed for acquiring explicit
knowledge of the structure of the task. In Experiment 2c, two partici-
pants were removed from the analysis due to response bias, two addi-
tional participants due to failing attention checks, and 10 participants
were due to acquiring explicit knowledge of the structure of the task. For
data of explicit participants, see the Supplementary materials.

4.2. Materials and procedure

The materials were identical to those in Experiment 1a. The general
procedure of Experiment 2a was identical to Experiment 1a, with the
exception of the specific movement directions. Participants no longer
saw balanced movement enforced by the same number of shifts to all
directions, but instead, they were randomly assigned to one of two
conditions, having more horizontal or more vertical movement on
average. In the horizontal condition, 75 % of the movements were along
the horizontal axis, with equal amounts of movements to the left and to
the right, and 25 % of the movements were along the vertical axis, with
equal amounts of movements up and down. This was implemented by
changing the direction of movement after 9, 12, 15, or 18 steps for
horizontal movement and after 3 or 6 steps for vertical movement. As a
result, horizontal pairs had more partial presentations than vertical
pairs, as they were shown partially only during horizontal movement. In
the vertical condition, the pattern of movement and, consequently, the
occurrence of partial presentations were reversed. For the sake of clarity
and simplicity, we will use the term parallel pairs for pairs aligned with
the predominant movement (e.g., horizontal pair in the horizontal
condition) and orthogonal pairs for pairs with orientation orthogonal to
the predominant movement (e.g., vertical pairs in the horizontal con-
dition) to refer to both conditions simultaneously.

Having a design with parallel and orthogonal pairs resulted in dif-
ferences in the amount of partial presentation, that is, in noise across the
three types of pairs of the inventory. In both the horizontal and vertical
conditions, the diagonal pairs had the overall highest number of partial
presentations since they were shown partially during both horizontal
and vertical movement. The conditional probabilities of the shapes of
one pair (the probability of one shape of a pair being visible when the
other shape is visible) were 0.6 for diagonal, 0.75 for parallel, and
0.0.916 for orthogonal pairs.

The only difference between Experiments 2a and 2b was that the
animated motion seen in Experiment 2a, showing a smooth transition of
the shapes during scene change was removed in Experiment 2b (Fig. 3).
As aresult, the temporal coherence across scenes was identical in 2a and
2b, i.e., the static pictures at the pauses followed the same sequence in
the two experiments. However, the strong perceptual cue to temporal
coherence given by the smooth motion pattern was present only in
Experiment 2a, allowing a separation of the effects of the spatio-
temporal co-occurrence statistics itself and the effect of perceived
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Exp 2a+b: Aperture shifts cell by cell
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Fig. 3. Presentation Modes in Experiments 2a-c. This graphic visualizes the
temporal relationship of subsequent spatial patterns in Experiments 2a-c. In
Experiments 2a and 2b, visualized in red, the visual aperture shifts by one cell
at a time, leading to a sequence of temporally coherent scenes. In Experiment
2c, visualized in yellow, the visual aperture visits the same overall parts of the
environment, leading to the same number of partial presentations of pairs.
However, as visualized with the yellow arrows, the order of visual scenes is
random and, therefore, not temporally coherent. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)

coherent motion of the scene. Since the statically presented inputs in
Experiment 2b could be less engaging, the same attention check was
included during the familiarization phase as in Experiment 1b.

Compared to Experiment 2b, the additional difference in Experiment
2c was the removal of temporal coherence of the stimuli presentation
(Fig. 3). Participants still saw the same still images as in Experiments 2a
and 2b between movements. However, instead of moving them in and
out of the grid by one cell at a tim4e, the scenes were temporally shuffled
and shown in random order. This manipulation achieves exactly the
same level of spatial noise in the visual input as in Experiments 2a and
2b but with an i.i.d. presentation instead of a temporally structured one.
As before, the same attention check was included during the familiar-
ization phase of Experiment 2c as in Experiment 1b.

4.3. Results

We performed one-sample t-tests for each of the three experiments
both individually for the different pair types (parallel, orthogonal, and
diagonal) and collapsed over pair types. In the collapsed analysis, sig-
nificant learning occurred in all three experiments (Exp 2a M(SE) = 56.7
(1.1), t(69) = 5.96, p < 0.001, d = 0.71, BF = 136,989; Exp 2b M(SE) =
53.4(1.2), t(71) = 2.84, p = 0.012, d = 0.33, BF = 5.2; Exp 2c M(SE) =
52.3(1.2), t(75) = 2.18, p = 0.032, d = 0.25, BF = 1.2). All significance
tests reported throughout the present study are corrected for multiple
comparisons as appropriate using the Holm-Bonferroni method (Holm,
1979).

The analysis of data in Experiment 2a for different pair types showed
that participants’ performance for the orthogonal (M(SE) = 57.1(2.3), t
(69) =3.17,p = 0.018, d = 0.38, BF = 12.2) and the diagonal (M(SE) =
58.7 (2.0), t(69) = 4.4, p < 0.001, d = 0.53, BF = 535) pairs were
significantly different from chance, while the performance for the par-
allel pairs was not: M(SE) = 54.4(2.0), t(69) = 2.2, p = 0.157, d = 0.26,
BF = 1.2. In Experiment 2b, the same separate analysis showed that the
performance for all of the three pair types failed to deviate significantly
from chance: parallel (M(SE) = 52.9(2.2), t(71) = 1.3, p = 0.006, d =
0.15, BF = 0.29), orthogonal (M(SE) = 51.2(2.1), t(71) = 0.5, p = 0.999,
d = 0.06, BF = 0.15), diagonal (M(SE) = 56.0 (2.2), t(71) = 2.7, p =
0.064, d = 0.32, BF = 3.5). In Experiment 2c, performance for neither of
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the three pair types was significantly different from chance: parallel (M
(SE) = 48.9(2.0), t(75) = —0.55, p = 0.999, d = 0.06, BF = 0.146),
orthogonal (M(SE) = 53.4(1.95), t(75) = 1.75,p = 0.338,d = 0.2, BF =
0.54), diagonal (M(SE) = 55.5 (2.3), t(75) = 2.4, p = 0.112, d = 0.276,
BF = 1.86) (see Fig. 4).

For further analysis, we entered Experiment 2a, 2b and 2c into one 3
x 3 mixed-ANOVA with pair type (parallel, orthogonal, diagonal) as a
within-subject factor and experiment (2a, 2b, 2c) as a between-subject
factor. The results showed a significant main effect of pair type (F(2,
430) = 3.74, p = 0.025, 5 2 _ 0.012) and of experiment (F(2, 215) =
3.22, p = 0.042, 7 2 = 0.012) but no significant interaction (F(4, 430) =
0.62, p = 0.649, 5 2 = 0.004). Tukey’s SHD post-hoc tests showed that
the diagonal pairs were learned significantly better than the parallel
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Fig. 4. — Results of Experiments 2a-c. The y-axis represents the performance on
2AFC trials. Error bars represent the standard error. The dotted line indicates
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** p < 0.01; *** p < 0.005. Top panel: results of pair type by experiment.
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pairs (p = 0.020, BF = 3.6) and that learning in Experiment 2c (i.i.d.
condition) was significantly worse than in Experiment 2a (p = 0.043, BF
= 3.2) (see Fig. 4).

4.4. Discussion

The overall pattern of the results suggests first that while participants
learned pairs in all three experiments, there was a significant modula-
tion in the amount of learning from the temporally coherent condition
(Exp. 2a) to the condition without perceived motion (Exp. 2b) and to the
setup without temporal coherence (Exp. 2c). This gradual modularity
effect is direct experimental evidence that participants use global tem-
poral regularities to learn local spatial patterns from passive exposure
and it furthermore supports the idea that the perceived motion is an
important general cue to temporal regularity.

The second surprising observation is that beyond showing a signifi-
cant general sensitivity to motion and temporal coherence, the amount
of learning did not directly reflect the local spatial statistical structure of
the stimuli. Participants learned the diagonal pairs better than either the
parallel pairs or orthogonal pairs despite their lower conditional prob-
ability (higher statistical noise) and despite being less aligned with the
direction of motion. This finding suggests the existence of substantial
additional factors influencing this kind of implicit statistical learning
beyond the co-occurrence statistics of elements.

5. Experiment 3a: Full generalization from purely temporal
statistics to static spatial structures

The previous set of experiments established that implicit learning of
spatial statistics present in the sensory input is profoundly affected by
factors beyond the spatial co-occurrences of elements, such as temporal
coherence and perceived motion, yet it did not clarify the extent of these
effects. In Experiment 3a, we focused on the first of the two findings of
Experiments 2a-c and directly compared the effect of spatially and
temporally conveyed information on learning spatially defined static
patterns. In particular, we modified the experimental design and tested
whether participants would be able to learn static spatial structures of
the environment when they never see these spatial patterns during
familiarization, but they need to infer their existence implicitly from
dynamically presented partial information. In addition, we explored the
nature of the interaction between temporal and spatial statistics and the
general inductive biases that emerge from detecting global motion and
occlusion.

5.1. Participants

132 (60 female, mean age 27.1, SD = 11.1) participants gave
informed consent prior to the experiments. The sample size calculation
built on the previous experiments but assumed a lower alpha level of
0.005 to account for the higher number of multiple comparisons (more
tests in this experiment) and assumed a higher rate of exclusions. Par-
ticipants were recruited via prolific. co and received £ 2.3.

Prior to analysis, two participants were removed for response bias
(bias for one of the two responses buttons >2 SD), two participants were
excluded for failing the attention check (having the attention check
message appear at least 10 times over all three instances of the attention
check), and 18 participants were removed for acquiring explicit
knowledge of the structure of the task (for data of explicit learners see
Supplementary Materials).

5.2. Materials

This experiment used the same materials as the previous experi-
ments, but with one important difference. Throughout the experiment, a
rectangular static occluder strip image with 1/f-noise content and 50 %
of the width and height of the grid cells was placed over the middle row
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or column of the grid. This strip covered the central part of the cells in
the middle row (or column) so that the shape present in these cells was
not visible during the static sections of the presentation when the
movement was paused (Fig. 5).

5.3. Procedure

The general procedure was built on Experiment 1a but -beyond the
occluder- introduced one more change to the familiarization phase to
achieve the desired temporal and spatial presentation modes of pairs.
Every participant in Experiment 3a saw movement along only one
orientation, i.e., only horizontal movement (left, right) or vertical
movement (up, down). Participants first saw movement in one direction
for 60 steps, then movement in the opposite direction for 60 steps, then
48 steps in the first movement direction again and finally, 48 steps in the
second movement direction. The static occluder overlaid over the three
central grid cells was always perpendicular to the movement direction.
At each movement direction change, an attention check appeared,
identical to the one used in Experiment 1b.

The combined result of this change and the superimposed occluder
was a more extreme separation between the underlying pairs in terms of
their defining type of statistics. Orthogonal pairs (pairs perpendicular to
the movement direction) were only presented spatially and never
temporally; that is, the two shapes of these pairs always appeared only
together, never alone, and they never followed each other temporarily in
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Fig. 5. — Familiarization phase of Experiment 3a + b. Experiment 3a + b intro-
duce two key changes to the basic stVSL setup. (1) Participants see only either
horizontal or vertical movement (counter-balanced between groups). (2) An
occluder is overlaid over the three central grid cells perpendicular to the
movement direction. The combined effect of these two changes is that pairs
aligned with the movement direction are now presented only temporally, while
pairs perpendicular to the movement direction are only presented spatially. The
graphics visualize the condition using only horizontal motion. The top panel
directly shows what participants see in the experiment. The bottom panel is
only for illustration purposes as it highlights the underlying structure by color
coding pairs and making the occluder transparent.
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the same grid cell. In contrast, parallel pairs (pairs aligned with the
movement direction) were never visible next to each other in the still
images between movements (2 s) and, as mentioned in Exp 1, were
essentially not visible next to each other during the short movement
period (0.5 s). However, the shapes of the parallel pairs had perfect
temporal coherence as they always followed each other in the same
position of the grid. Diagonal pairs represented a noisier version of the
parallel pairs as they had the same type of temporal coherence and
essential lack of spatial co-occurrence as parallel pairs, but instead of
following each other temporarily in the same grid cell, the two shapes of
the pairs also had a spatial offset.

In the test phase following the nine-minute familiarization phase,
participants completed three types of 2AFC tests.

The Standard Learning Trials test was identical to those in previous
experiments, pitting against each other real vs. foil pair tests in each
trial. In these trials, the orientations of the two alternatives within a trial
were always the same.

In the Spatial Learning Trials test, the two options of a trial presented
the same shapes of one given real pair but the shapes were presented
once in their correct spatial arrangement (e.g., horizontal) and once in
an opposite arrangement (vertical). Diagonal pairs were tested against
themselves in a different diagonal arrangement. This test measured the
participants’ additional knowledge of the spatial structure of the pairs
beyond the co-associations of the shapes of the pair.

In the Bias Trials test, the same logic was applied as in the Spatial
Learning Trials, but a foil pair was used for each trial instead of real pairs.
In these trials, there was no correct orientation and, thus, no correct
answer since these pairs were not seen during the familiarization phase.
Therefore, the test was suitable for assessing the participants’ overall
bias in choosing either the horizontal or the vertical orientation, inde-
pendent of any knowledge of pair structures.

Participants first completed the Spatial Learning Trials and Bias Trials
intermixed, followed by the Standard Learning Trials. This order was
chosen to ensure minimal interference between the test trials.

5.4. Results

In the Standard Learning Trials, participants’ performance with par-
allel pairs was significantly above chance: M(SE) = 58.2(2.4), t(109) =
3.4, p = 0.004, d = 0.33, BF = 23.5. The performance with orthogonal
(M(SE) = 48.6(2.6), t(109) = —0.52, p = 0.692, d = 0.05, BF = 0.12) and
diagonal (M(SE) = 54.5 (2.3), t(109) = 1.99, p = 0.148, d = 0.19, BF =
0.70) pairs was not different from chance. These results indicate that
when the orientation of the true and foil pairs in the test trial was not
different, participants showed evidence of learning only the “parallel”
pairs -that is, the pairs oriented parallel to the direction of motion and
perpendicular to the occluder, for which evidence was provided by
temporal transitions. Meanwhile, participants failed to show learning
the “orthogonal” and “diagonal” pair structures for which no evidence
was provided by direct temporal transition but only by direct or more
indirect spatial co-occurrence.

In the Spatial Learning Trials, performance with parallel pairs was
significantly above chance: M(SE) = 65.5(2.7), t(109) = 5.68, p <0.001,
d = 0.54, BF = 1.010°. The performance with orthogonal pairs was
significantly below chance (M(SE) = 36.8 (2.6), t(109) = -5.2, p
<0.001, d = 0.49, BF = 1.1*104), while the performance with diagonal
pairs was not different from chance (M(SE) = 52.5 (2.6), t(109) = 0.95,
p = 0.692, d = 0.09, BF = 0.16). These results confirm that when the
shapes in the two test scenes were the same and thus the identity of the
shapes in the pairs of the two alternative choices could not help the
decision, participants’ choices were highly influenced by the direction of
the general motion of the patterns within the aperture. Importantly, this
influence was a general motion bias rather than an integrated (shape
identity + pair orientation) knowledge since participants erred signifi-
cantly against the correct orientation, with pairs having their true
orientation orthogonal to the motion direction.
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Since in the Bias Trials, there were no correct response options, the
data for all parallel and orthogonal foil pairs was considered together
and scored for choosing the parallel or orthogonal option. The trials for
diagonal pairs were not considered in this analysis. For every partici-
pant, the proportion of parallel choices was expressed in percent and
then subtracted by 50, to get a measure of bias away from a chance level
of zero. Positive bias suggests more parallel choices and negative bias
suggests more orthogonal choices. One-sample t-tests showed that par-
ticipants chose the parallel options significantly more often: M(SE) = 8.0
(2.0), t(109) = 3.99, p <0.001, d = 0.38, BF = 149.

For further analysis, the data of the Standard Learning Trials and
Spatial Learning Trials were entered into one 2 x 3 mixed-ANOVA with
test type (Standard Learning Trials, Spatial Learning Trials) and pair type
(parallel, orthogonal, diagonal) as within-subject factors. The results
showed a significant main effect of pair type (F(2, 545) = 25.6, p
<0.001, 5 2 - 0.19) and a significant interaction (F(4, 545) = 7.4, p
<0.001, 2 = 0.06). The main effect of test type was not significant, F(1,
545) = 1.28, p = 0.26, 2 = 0.01. Tukey’s SHD post-hoc tests showed
significantly higher performance for the parallel pairs than the orthog-
onal pairs in the Standard Learning Trials (p = 0.025), and in the Spatial
Learning Trials (p <0.001). The diagonal pairs showed significantly
higher performance than the orthogonal pairs only in the Spatial
Learning Trials (<0.001). The parallel pair showed significantly higher
performance than the diagonal pair only in the Spatial Learning Trials (p
= 0.001).

To test whether the high deviation from chance in the Spatial
Learning Trials was based solely on the bias also measured in the Bias
Trials or if it additionally included knowledge about the orientation of
the specific pairs, a direct comparison of both measures was conducted.
For this purpose, the results for the parallel pairs and the orthogonal
pairs in the Spatial Learning Trials were separately transformed into a
measure of deviation from chance, as described for the Bias Trials. Paired
t-tests showed that the deviation from chance for the parallel pairs (t
(109) = —2.60, p = 0.021, d = 0.30, BF = 2.6) but not the orthogonal
pairs (t(109) = —1.92, p = 0.058, d = 0.22, BF = 0.62) was significantly
higher than the bias measured in the Bias Trials. This suggests that
participants have knowledge about the actual orientation of pairs they
have learned. The results for all test types are visualized at the top in
Fig. 6.

5.5. Discussion

In this setup, the participants were able to learn only the temporally
presented parallel pairs and not the spatially presented perpendicular
ones. The results of the Bias Trials suggest that participants had a
dominant overall bias in the test trials to choose the pair with an
orientation that aligned with the movement direction perceived during
the training, regardless of what the true orientation of the pair was
originally. Nevertheless, participants did have knowledge about the
actual orientation of pairs they had learned and the effect of this
knowledge was detectable in the difference of their responses between
parallel and orthogonal pairs. While the exact nature of this interaction
between learning features of specific pairs, the perceived movement
direction, and the observed overall bias remain unclear, these results
highlight that statistical learning goes beyond simple counting of lower
level co-occurrence statistics and also incorporates top down effects.

6. Experiment 3b: Dominance of perceived overall movement
over learned statistics

Was the effect in Experiment 3a driven predominantly by the un-
derlying spatio-temporal co-occurrence statistics, or was it also influ-
enced by broader features of the stimulus presentation, such as the
perceived overall motion of the scenes or the static structure of the
occluder? Experiment 3b addressed this question by using the same
spatio-temporal structure as Experiment 3a, retaining the occluder but
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Fig. 6. Results of Experiments 3a and 3b. The y-axis represents the partici-
pants’ mean performance on 2AFC trials. Error bars represent the standard
error. The dotted line indicates the chance level of 50 % or 0 %. Stars represent
the significance of the difference from chance. * p < 0.05; ** p < 0.01; *** p <
0.005. The Standard Learning Trials was a standard learning test using one real
pair from the training phase and one foil pair created by combining shapes of
two real pairs. It measures learning of item co-occurrence. The Spatial Learning
Trials test showed the same real pair twice. Once in its correct orientation and
once rotated by 90°. It measures learning of the spatial arrangement of learned
pairs. The Bias Trials test showed the same foil pair twice. Once horizontally
and once vertically. There is no correct response, and it measures bias for one of
the orientations.

removing the movement animation.
6.1. Participants

117 (52 female, mean age 30.4, SD = 11.9) participants gave
informed consent prior to the experiments. Participants were recruited
via prolific.co and received £ 2.3.

Prior to the analysis, two participants were removed for response
bias (bias for one of the two response buttons >2 SD), six participants
were excluded for failing the attention check (having the attention check
message appear at least 10 times over all three instances of the attention
check), and 7 participants were removed for acquiring explicit knowl-
edge of the structure of the task (for data of explicit learners see Sup-
plementary Materials).



D. Garber and J. Fiser
6.2. Materials and procedure

The material was the same in Experiment 3b as in Experiment 3a.
The procedure was also identical between the experiments in every way
apart from the movement animation. While in Experiment 3a, the
stimulus displays drifted, and hence the shapes moved in and out of the
visible aperture with a 0.5-s animated movement between the 2-s steady
sections, in Experiment 3b, the animation was replaced by a 0.5-s blank
screen. Note that the spatial and temporal structure was not altered by
this manipulation. Parallel pairs were still presented only temporally,
and orthogonal pairs were still presented only spatially.

6.3. Results

6.3.1. Standard learning trials

One-sample t-tests showed that in the Standard Learning Trials the
performance for all of the pairs was not different from chance: parallel
(M(SE) = 51.3(2.5), t(99) = 0.51, p = 0.99, d = 0.05, BF = 0.125),
orthogonal (M(SE) = 48.5(2.9), t(99) = —0.51, p = 1.00, d = 0.05, BF =
0.126), diagonal (M(SE) = 50.0(2.9), t(99) = 0.00, p = 1.00, d = 0.00,
BF = 0.11). Overall, these results suggest that participants did not reli-
ably learn any pairs in this experiment.

6.3.2. Spatial learning trials

One-sample t-tests showed that in the spatial-real test, the perfor-
mance for all of the pairs was not different from chance: parallel (M(SE)
=47.0(2.7), t(99) = —1.09, p = 1.00, d = 0.11, BF = 0.198), orthogonal
(M(SE) = 56.5(2.7), t(99) = 2.41, p = 0.107, d = 0.24, BF = 1.7), di-
agonal (M(SE) = 51.5(2.5), t(99) = 0.59, p = 1.00, d = 0.06, BF = 0.13).

6.3.3. Bias trials

Data for this test was converted to a measure of bias away from
chance, as in Experiment 3a. One-sample t-tests showed that partici-
pants chose the orthogonal options significantly more often: M(SE) =
—9.0(2.0), t(99) = —4.55, p <0.001, d = 0.46, BF = 1051.

To test whether the significant difference between parallel and
orthogonal pairs in the Spatial Learning Trials, found in Experiment 3a
along the direction of the overall bias (results of Bias Trials), is also
present here, a paired t-test was performed. The frequentist analysis of
the results showed significantly higher performance for the orthogonal
pair trials (t(99) = —2.16, p = 0.033, d = 0.35), but Bayesian evidence
did not provide strong support for this conclusion (BF = 1.03). To test
whether the results of the Spatial Learning Trials were in line with the
bias measured in the Bias Trials, a direct comparison of both measures
was conducted. For this purpose, the results for the parallel pairs and the
orthogonal pairs in the Spatial Learning Trials were separately trans-
formed into a measure of deviation from chance, as described for the
Bias Trials. Paired t-tests showed no deviation from the bias measured in
the Bias Trials for either the parallel pairs (t(99) = —2.20, p = 0.061,d =
0.25) or for the orthogonal pairs (t(99) = —0.87, p = 0.389, d = 0.11),
but there was strong evidence for ruling out learning only in the case of
orthogonal pairs (BF = 0.16) not for the parallel ones (BF = 1.1). The
results for all test types are visualized in Fig. 6.

6.4. Discussion

Overall, we found no learning of specific pairs in this setup despite
the fact that not only the static spatial statistics but also the instructions
for Experiments 3a and 3b were identical, clearly stating that shapes
would be moving in and out horizontally. Thus, participants in Experi-
ment 3b were aware of the movement of the underlying scene even
without directly observing it through animation. In addition, the spatial
structures in Experiment 3b were more isolated and fewer in any given
scene compared to setups without an occluder; they were fully pre-
dictable when reappearing from behind the occluder and were not
overshadowed by global motion. Still, participants were equally unable
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to learn the orthogonal pairs in both experiments. Meanwhile, the par-
allel pairs were also not learned in Experiment 3b, showing a significant
drop in performance compared to Experiment 3a, despite the two ex-
periments having identical temporal statistics aside from the presence of
animation. These results suggest that the learning of temporally pre-
sented parallel pairs in Experiment 3a was not driven primarily by
temporal regularities, but rather resulted from a synergistic interaction
between the statistical structure and the visually observed global
movement.

Importantly, while in Experiment 3a participants showed an overall
bias to choose options aligned with the movement direction, partici-
pants in Experiment 3b preferred options perpendicular to that direc-
tion. This shift in biases suggests that while in Experiment 3a the overall
bias was induced by the observed general movement, the opposite bias
observed in Experiment 3b was due to the static spatial layout defined by
the orientation of the occluder and the shapes of the perpendicular pairs
seen next to each other. These static-spatial-layout-based statistics were
also available in Experiment 3a, but they were apparently over-
shadowed by the bias generated by the perceived global movement.
Thus, our combined results from the two experiments highlight the
flexible combination of local statistics and general biases according to
their relative salience during the statistical learning process.

7. General discussion
7.1. Synthesis of results

Utilizing a novel VSL paradigm, the present study provides a sys-
tematic exploration of three major factors influencing the formation of
internal representations in humans through implicit statistical learning:
(a) the noisiness of the statistical contingencies available to the observer,
(b) the interplay between purely spatial and purely temporal statistics
during learning, and (c) the extent and nature of modulatory effects
from pre-existing biases.

Assessing the first factor, the effect of noise is important because, by
definition, lowering the transitional or co-occurrence probabilities of
elements in sensory input (i.e., increasing noise) should hinder statistical
learning and some informal results support this reasoning. However, the
context and nature of the noise matter, as they can also create situations
where reduced local transitional probabilities actually enhance the
overall learning of structure (Gomez, 2002). Our results confirm this
two-sided effect of noise. In our paradigm, observers were able to
implicitly learn purely spatial visual structures, and this learning was
not significantly affected by the presence of added spatial statistical
noise, as evidenced by the lack of performance difference between Ex-
periments 1a and 1b.

In contrast, this learning was strongly influenced by factors beyond
purely spatial statistical probabilities -namely, the presence of temporal
statistics derived from the coherent movement of the stimulus (Experi-
ment 2c). This suggests that even in the most restricted version of
coexisting spatial and temporal statistics -where the underlying struc-
ture is purely spatial and the temporal statistics can be clearly factorized
away from the spatial structure by attributing them to global motion- the
process of learning spatial structures in the world does not rely solely, or
even predominantly, on momentary spatial co-occurrences, but also on
temporal aspects of the input. This nontrivial effect is clearly demon-
strated by the surprising superiority in learning diagonal pairs in
Experiment 2, despite these having the highest level of spatial noise. By
adding an occluder to the scene, we assessed the limits of this interaction
-using temporal statistics to learn spatial structures- and found a com-
plete transferability: purely spatial structures were learned from
temporally presented statistical input without any direct presentation of
the true spatial layout (Experiments 3a and 3b).

Regarding the third factor, the extent and nature of modulatory ef-
fects from pre-existing biases, the findings of Experiment 3 point to a
more complex influence than the simple transfer of temporally
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presented statistics to the formation of spatial structure representations.
The Bias test results from Experiments 3a and 3b indicate that high-level
knowledge of the same biasing information alone is insufficient to
initiate an interaction between temporal statistics and the implicit
learning of spatial structure. Although participants in Experiment 3b
were fully aware of the direction of global motion during familiariza-
tion, this knowledge itself did not manifest as an implicit bias: in both
the Bias test trials (using random pairs) and the Spatial test trials (using
shapes from true pairs), participants tended to select pairs oriented
consistently with the occluder’s orientation during familiarization. Only
the presence of a directly observable animation cue in Experiment 3a
reversed this pattern, resulting in a bias toward the direction of motion
in both the explicit Bias test and the more implicit Spatial test, effec-
tively overriding the occluder’s influence. The necessity of presenting
global motion information in a sensory (rather than purely conceptual)
format in order to influence implicit learning and generalization un-
derscores a key distinction between the mechanisms underlying implicit
sensory inference and explicit causal reasoning.

Interestingly, although the motion-based bias in Experiment 3a also
influenced the Standard test, the deviation from chance was smaller for
both parallel and orthogonal pairs compared to the Spatial test in the
same experiment—eventhough the foils in the Standard test could be
rejected based on both orientation and shape identity, whereas in the
Spatial test only orientation could be used. This suggests an interplay
more complex than simple additivity among shape familiarity, pair fa-
miliarity, motion-biased familiarity of pair orientation, and occlusion-
based bias.

In sum, the general message of our present study is twofold. First, we
found that even the most restricted combination of spatial and temporal
aspects in the input -alongside a purely spatial underlying structure-
produces results that cannot be predicted by simply extrapolating from
prior studies of spatial and temporal statistical learning conducted in
isolation. This suggests that perceiving and learning spatial and tem-
poral regularities through VSL are not two separate, independent pro-
cesses, but rather two intimately interacting components of an
integrated mechanism. While this conclusion may not be entirely sur-
prising, the extent of the interaction between spatial and temporal as-
pects of the input has not been clearly demonstrated before. Moreover,
the vast majority of statistical learning studies do not investigate situ-
ations in which spatial and temporal aspects are combined. Therefore,
our results should motivate the development of more sophisticated
paradigms to systematically explore this integrated learning mechanism.

Second, even when combined, contingency-based low-level spatio-
temporal statistical learning is not an independent process operating
separately from more abstract aspects of the observer’s internal
knowledge. In parallel with learning specific chunks of the input scenes
based on low-level spatio-temporal co-occurrence statistics, people also
automatically develop various higher-level representations of general
features of the input (e.g., variability of the input, overall motion di-
rection, presence of an occluder, etc.). This knowledge generates biases
that interact with -and strongly influence- implicit spatial structure
learning on equal footing with low-level statistical contingencies. These
higher-level biases are typically more general and can influence the
learning process in a non-local manner -for example, by enhancing the
learning of all spatial co-occurrence statistics that share orientation with
the direction of global motion.

The complex and unexpectedly strong interactions among global
motion-based and occlusion-based biases, along with the spatial and
temporal statistics of the input -including the complete transfer of
temporally presented correlational information to spatial knowledge-
pose a serious challenge to traditional computational explanations of
VSL based solely on co-occurrence or transitional probability counting.
Instead, they support a shift away from this currently dominant inter-
pretation of visual statistical learning toward a view of VSL as a flexible
inference-making mechanism -one that continuously integrates various
types of sensory and knowledge-based evidence to produce a fuller
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interpretation of scenes during perception and learning, as proposed in
Fiser and Lengyel (2022).

7.2. Relation to previous research

A few earlier statistical learning studies have already investigated
the joint learning of temporal and spatial regularities. These studies
found that infants could learn spatio-temporal sequences defined by the
order of global positions (Kirkham, Slemmer, Richardson, & Johnson,
2007), that adults could transfer visually learned spatial associations to
detect some of the same associations when presented temporally and
vice versa (Turk-Browne & Scholl, 2009), and that spatio-temporal
regularities could guide attention (Xu, Theeuwes, & Los, 2023). How-
ever, these studies primarily focused either on demonstrating the exis-
tence of such learning (e.g., Can we use spatial and temporal statistics
concurrently at all for learning?) or on specific applications of the learned
spatial and/or temporal statistics (e.g., Can we use a subset of the learned
temporal statistics in spatial tasks and vice versa? Can we use learned spatial
or temporal statistics to guide attention?).

The current work extends these previous studies in multiple ways.
For example, while it has been shown that VSL is flexible enough to
support successful performance on a temporal test after learning a
spatial structure, and vice versa (Turk-Browne & Scholl, 2009), these
findings can be explained by assuming that learning either type of sta-
tistics results in general associations between shapes. However, this does
not demonstrate a higher level of complexity -namely, that participants
retained any meaningful spatial structure after purely temporal learning
(or vice versa) beyond simple co-association. In contrast, the current
study connects the two domains in an ecologically relevant way by
directly investigating the extent to which temporal coherence during
learning can establish spatially defined structures, such as an oriented
pair. Our results show that this learning goes beyond simple co-
association of visible elements in the spatial structure and can operate
through unconscious inference based purely on temporal structural
information.

Similarly, Tummeltshammer and colleagues presented infants with a
spatial structure setup in their spatial context condition that resembled
the structure used in the current stVSL paradigm (Tummeltshammer,
Amso, French, & Kirkham, 2017). However, in their trials, shapes
entered from one end of the screen, moved across it in a single direction,
and exited at the other end -thus introducing a temporal order to stimuli
that were intended to be spatially defined. Furthermore, the same shape
pairs appeared multiple times simultaneously on the screen, potentially
introducing an uncontrolled pop-out effect of spatial regularity. In
contrast, such effects can either be avoided or systematically studied
-both in isolation and in interaction- using our stVSL setup, enabling
more comprehensive conclusions about these interactions.

The most relevant prior work is a study demonstrating that, when
possible, observers implicitly form temporal sequences based on spatial
configurations rather than on single objects in a multi-element display
(Yan, Ehinger, Pérez-Bellido, Peelen, & de Lange, 2023). This work can
be viewed as complementary to ours: their main focus is the role of
spatial regularities in the acquisition and perception of temporal pat-
terns, whereas we focus on the role of temporal regularities in the
acquisition of spatial patterns. Once these two questions are sufficiently
understood in isolation, our setup could be extended to combine them in
a single paradigm to investigate the numerous interconnected levels of
spatial and temporal organization formed in real-world visual input, as
our temporally presented spatial patterns could be arranged arbitrarily
to predict each other.

The current work is also related to studies on learning spatial and
temporal regularities outside the field of VSL. A special case of learning
spatial representations from temporal statistics is investigated by studies
of the trace learning rule, which explore how invariant object repre-
sentations can emerge in an unsupervised manner by temporally asso-
ciating different observed spatial patterns (Wallis & Rolls, 1997).
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However, these studies address a somewhat distinct and complementary
problem: how perceptually very different spatial patterns can be pro-
gressively co-associated with the same “object category” by relying on
the temporal proximity of these patterns in time. While the trace rule
focuses on building hierarchical representational structures of abstract
categories, our study focuses on how relevant spatial statistical structure
can be learned even at the lowest level of representation, based on
multiple types of structural information.

Studies on amodal completion have investigated visual perception
under partial occlusion (Kanizsa, 1985; van Lier & Gerbino, 2015).
Other studies have investigated the top-down influences of prior object
knowledge (Hazenberg, Jongsma, Koning, & van Lier, 2014; Hazenberg
& van Lier, 2016; Yun, Hazenberg, & van Lier, 2018). These studies are
complementary to the current work in that they focus on partial pre-
sentations or occlusions during perception or inference, whereas we
investigate these effects during learning. The crucial link between these
studies and ours is their reliance on the unconscious inference mecha-
nism to explain results and demonstrate how inference and learning are
strongly intertwined at the computational level (Fiser, Berkes, Orbdn, &
Lengyel, 2010).

Another related line of research, labeled aperture viewing (Morgan,
Findlay, & Watt, 1981) and minimal videos (Ben-Yosef, Kreiman, & Ull-
man, 2020) focuses on the minimal spatial and temporal information
necessary to recognize objects. Similar to our work, both studies
consider the integration of spatial and temporal information, with one
crucial difference. These studies demonstrate how, in a rich spatio-
temporal input space, the two types of information can be used inter-
changeably to achieve recognition. In contrast, we use a controlled sit-
uation to show the limits of how much one type of information is
sufficient to create a representation of the other. Another study in the
related area of spatial navigation reported that perceived spatiot-
emporal continuity helps with spatial long-term memory, independent
of explicit memory performance (Liverence & Scholl, 2015). These re-
sults align with our findings, showing that removing overt cues to spatio-
temporal coherence (i.e., movement animation) hinders the implicit
formation of memories of spatial patterns.

In sum, our study differs from earlier reports in two general ways.
First, it provides a more comprehensive and controlled examination of
the possible interactions between spatial and temporal sensory struc-
tures and internally generated biases. Second, it aims to establish gen-
eral constraints and gain insights into the computational frameworks
that can explain the emerging behavioral patterns in statistical learning.

7.3. Potential extensions

Our experimental design was deliberately kept simple: spatially fixed
shape-pair structures, a single global motion pattern for temporal sta-
tistics, and one occlusion structure. This minimal setup was sufficient to
address the study’s questions and demonstrated that, even under such
simplified conditions, complex interplays between statistical input and
learning can emerge. While we highlighted the interactions between
various effects shaping statistical learning, we did not provide a direct
explanation for one of the intricate patterns emerging in Experiments
2a-c—namely, that the performance rankings for different pair types did
not align with the strength of traditional conditional probabilities in
spatial statistics. Specifically, we found that diagonal pairs were learned
best, suggesting that temporal transitional probabilities to neighboring
(but not identical) cells may have exerted a stronger influence during the
unconscious inference process.

Although further investigation of this effect was beyond the scope of
the current study, future research is needed to clarify which of several
potential underlying mechanisms is at play. First, the implicit integra-
tion of spatial information across time in our experiment may be
strongest not at the exact same spatial location, but equally strong at
neighboring locations. This effect could be driven by afterimages
resulting in masking and/or by an extension of the mechanism that
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supports conventional spatial VSL over time. In this case, participants
may have associated the content of a grid cell not only with the content
of neighboring cells at the same moment, but also with previously seen
content stored in working memory. Second, the effect could be influ-
enced by the relative uniqueness of the diagonal pairs compared to other
types. While there are two structurally identical parallel and two
orthogonal pairs (i.e., pairs of two shapes next to each other horizontally
or vertically), the two diagonal pairs are more distinct -one arranged
high-left to low-right, the other low-left to high-right. As shown in recent
work, such structural features can influence VSL through potential
interference (Garber & Fiser, 2024).

The two properties jointly inducing the learning biases in the current
experiments -perceived movement direction and the perceived
arrangement of shapes- are likely just two examples from a larger set of
factors that can influence statistical learning. One such factor is the
modality in which learning occurs. An intriguing question is whether the
same paradigm, implemented in both the visual and auditory modalities,
would yield similar specific results beyond any overall differences in
learning efficiency. Recent evidence suggests that, in the case of simple
temporal chunking of a long sound or visual scene sequence, human
observers exhibit similar biases in both audition and vision (Garami &
Fiser, 2024). If similar homology is found in learning structural infor-
mation across the two modalities, it would provide strong support for
the domain-generality of statistical learning (Frost, Armstrong, Siegel-
man, & Christiansen, 2015). The controlled setup of the present exper-
imental design offers a natural testbed to explore this issue.

There are two important extensions of the basic design that should be
addressed by future research to better link statistical learning to human
representational learning in its full complexity. The first extension re-
lates to research under the titles of transfer learning and curriculum
learning. Studies in these domains investigate how further abstractions
of biases -such as global motion and occlusion in our paradigm- can
emerge during the training phase and influence the future learning of
representational hierarchies (Dekker, Otto, & Summerfield, 2022;
Whittington et al., 2020). These abstract biases -for example, attributing
motion to a visual region without observed motion in that area, or
expecting the appearance of a particular shape from behind an occluder-
can emerge only after lower-level structures have been learned and
therefore do not belong to the original explicit feature space. A recent
study using a new sVSL paradigm showed evidence of such transfer
learning in a VSL context (Garber & Fiser, 2024). This paradigm can be
naturally combined with the design of the present study to investigate
the emergence of higher-level biases during transfer learning in a spatio-
temporal context.

The second direction is “active learning,” which can be explored
within the current paradigm by giving participants control over the di-
rection of movement. In this setup, the nature and dynamics of partic-
ipants’ exploratory behavior -and its interaction with already acquired
knowledge- could be examined, similar to a recent gaze-contingent
approach (Araté et al., 2024), using novel measures of VSL such as
predicting upcoming stimuli based on currently presented partial pairs.
Furthermore, our spatio-temporal VSL paradigm enables the exploration
of neural correlates through methods such as neural frequency tagging,
which could be extended from its current application in purely temporal
statistical learning (Batterink & Paller, 2017; Moser et al., 2021) to the
learning of spatially defined structures.

The extensions described above outline a progression from tradi-
tional VSL methods, which investigate the basic steps of implicit
learning, to paradigms better suited to examining more directly how
implicit learning in humans can support the more intricate integration of
spatial and temporal statistics with knowledge-based concepts. The ul-
timate result of such integration is the emergence of a complex, abstract
structural description, or “world model” (Bramley, Zhao, Quillien, &
Lucas, 2023). Accordingly, the relevant research questions in these
paradigms will shift from those asked in the present study to questions
about the nature of such abstract representations of our complex,
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continuously changing dynamic environment -for example, the nature of
“object representation.” Our stVSL paradigm and the results presented in
this study thus provide a first small step toward a fuller understanding of
how humans learn a comprehensive and coherent, yet parsimonious,
representation of the world.
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