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A B S T R A C T

Visual Statistical Learning (VSL) is classically investigated in a restricted format, either as temporal or spatial 
VSL, and void of any effect or bias due to context. However, in real-world environments, spatial patterns unfold 
over time, leading to a fundamental intertwining between spatial and temporal regularities. In addition, their 
interpretation is heavily influenced by contextual information through internal biases encoded at different scales. 
Using a novel spatio-temporal VSL setup, we explored this interdependence between time, space, and biases by 
moving spatially defined patterns in and out of participants’ views over time in the presence or absence of 
occluders. First, we replicated the classical VSL results in such a mixed setup. Next, we obtained evidence that 
purely temporal statistics can be used for learning spatial patterns through internal inference. Finally, we found 
that motion-defined and occlusion-related context jointly and strongly modulated which temporal and spatial 
regularities were automatically learned from the same visual input. Overall, our findings expand the concep
tualization of VSL from a mechanistic recorder of low-level spatial and temporal co-occurrence statistics of single 
visual elements to a complex interpretive process that integrates low-level spatio-temporal information with 
higher-level internal biases to infer the general underlying structure of the environment.

1. Introduction

Understanding how we learn representations of the significant 
structures in our sensory environment is one of the key challenges in 
uncovering how the mind works. The field of Statistical Learning (Aslin, 
2017; Santolin & Saffran, 2018) addresses this question directly across 
various sensory modalities (Isbilen & Christiansen, 2022; Turk-Browne, 
2012), most prominently in vision (Fiser & Lengyel, 2022). In visual 
research, the field is traditionally divided into spatial and temporal Vi
sual Statistical Learning (sVSL and tVSL, respectively). In sVSL, the 
statistical regularities to be learned are found exclusively in the spatial 
relationships of simultaneously presented elements within a scene, with 
no persistent temporal structure across the sequence of scenes (Fiser & 
Aslin, 2001) (Fig. 1 A). In contrast, in tVSL, statistical regularities can be 
acquired only through temporal associations between elements of 
sequentially presented scenes, as each individual scene consists of a 
single element and thus carries no meaningful spatial information (Fiser 
& Aslin, 2002a; Kirkham, Slemmer, & Johnson, 2002) (Fig. 1B).

While the separate investigation of spatial and temporal regularities 
is useful for gaining an initial understanding of representational 
learning, it stands in contrast to real-world experience, where spatial 
and temporal regularities are always intertwined. Indeed, several 

studies have suggested that humans interpret visual input through a 
combined processing of spatial and temporal information (Gepshtein & 
Kubovy, 2000; Hochberg, 1968; Johansson, 1973; Rolls, 2012; Stone, 
1998; Wallis & Rolls, 1997). Moreover, spatio-temporal regularity and 
stability have been consistently cited as defining features of objects and 
object cognition (Baillargeon, 2008; Piaget, 1954). If representational 
learning does, in fact, depend significantly on the interaction between 
spatial and temporal regularities, then relying on experimental ap
proaches that isolate either domain risks seriously limiting our under
standing of how such learning functions.

The processing of spatial and temporal statistics interacts not only 
with each other during learning but also with various inherent biases 
represented in the brain. These biases reflect expectations based on both 
momentary factors (Wade, Spillmann, & Swanston, 1996) and long-term 
knowledge (Sun & Perona, 1998), shaped by actual sensory input and 
extensive experience. They can influence both ongoing perception 
(Carlson, 1962) and learning (Liu, Dolan, Kurth-Nelson, & Behrens, 
2019). Yet, very few studies have explored the interaction between 
ongoing visual statistical learning (VSL) and these inherent biases (Lee, 
Liu, & Lu, 2021).

The present work addresses the two aforementioned issues -the 
synergy between spatial and temporal visual statistical learning (sVSL 
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and tVSL), and the interaction between VSL and internal biases- by 
focusing on three intertwined questions. 

1. How primary is the strength of statistical information (and its 
accompanying noise) in determining the outcome of statistical 
learning? Existing studies in the field often limit spatial co- 
occurrence and temporal transitional probabilities to perfect corre
lations, with only anecdotal reports on learning under imperfect, 
noisy conditions.

2. At what level of abstraction can the interchange between sVSL and 
tVSL occur? For example, can humans extract spatial structures by 
inferring them from purely temporal evidence -without ever directly 
observing those spatial structures- or are spatial and temporal 
learning processes kept separate until relatively late stages of the 
knowledge representational hierarchy?

3. To what extent do inferential biases originating from higher-level 
knowledge -such as the general direction of stimulus motion or the 
presence of specific occlusions- reshape which statistical patterns are 
actually learned during statistical learning, even when all are equally 
available?

To investigate these questions, we developed a new spatio-temporal 
VSL (stVSL) paradigm, in which spatially defined patterns (i.e., fixed 
spatial arrangements of novel shapes) move in and out of the observer’s 
view (Fig. 1C). This paradigm allows for the systematic manipulation or 
removal of temporal and spatial statistics under different conditions 
involving motion-induced or occlusion-based biases, enabling direct 
comparisons of learning outcomes across scenarios.

Using this paradigm across seven experiments, we obtained three 
main results that clarify the process of complex statistical learning in 
context. First, as a baseline, we confirmed that participants can learn the 
underlying static spatial structure of an environment even when it is 
embedded within the dynamic spatio-temporal input of our experi
mental design. Second, we found that introducing, first, a temporal 
structure and, next, a perceived coherent direction of movement across 
subsequent scenes progressively increases the strength of statistical 
learning of spatial co-occurrences. Third, by adding occlusion to the 
dynamic scenes with a motion-direction bias, we observed that the 
complex interplay between temporal and occlusion-based biases does 

not merely enhance spatial statistical learning; it also: a) jointly alters 
which statistics are learned; b) enables purely temporal statistics to give 
rise to the learning of spatial structures; and c) goes beyond influencing 
choice preferences to actively boost the learning of statistics that are 
congruent with the configuration of biases.

Overall, these results suggest that visual statistical learning does not 
simply keep tab of low-level spatial and temporal co-occurrence statis
tics in the scenes and sums them up but acts as a sophisticated inte
grative process that combines low-level spatial-temporal information 
and various higher-level internal biases to develop a compatible internal 
representation of the underlying structure of the environment.

2. Rationale of the experimental paradigm

In nature, spatial and temporal statistics are typically present in a 
dynamically intertwined manner. For example, as animals move, their 
sub-parts (limbs, head, torso, etc.) change their relative positions to one 
another, and each part changes its appearance over time as the animal 
changes its global position. Yet, each part, as well as the animal as a 
whole, can be reliably identified across time. Moving rigid objects also 
provide the observer with temporal structure that can be integrated to 
comprehend a form which, in principle, can be described purely in 
spatial terms. For instance, viewing an object from different angles and 
integrating successive visual snapshots can help infer its three- 
dimensional shape. This latter problem has been explored using the 
“trace learning rule” (Wallis & Rolls, 1997), which relies critically on the 
temporal integration of successive spatial patterns to support the infer
ence of invariant, purely spatial object structures. While such scenarios 
are reduced in complexity, and thus easier to control in experimental 
settings, they still preserve the essential elements of combined spatial 
and temporal statistics. The present study investigates this latter type of 
spatio-temporal processing of visual input, where temporal coherence is 
used to extract stable spatial patterns.

In the classical spatial VSL studies, the stimuli were individual NxN 
grid-based scenes with simple shapes in some of the grid cells, and these 
scenes were presented in a randomized fashion during familiarization 
(Fiser & Aslin, 2001, 2002b, 2005; Lee et al., 2021). The simple shapes 
were positioned within the scenes according to some rules of co- 
occurrence of shape pairs, triplets or quadruplets defined by the 

Fig. 1. - VSL paradigms: Panel (a) shows the standard spatial visual statistical learning setup. Panel (b) shows the standard temporal visual statistical learning setup. 
Panel (c) shows the new spatio-temporal visual statistical learning setup (stVSL). There, the visual scenes are conceptualized as part of a larger visual environment, 
populated with the pairs of the inventory. Participants only see a 3 × 3 snapshot at a given time, akin to the 3 × 3 scene used in spatial VSL. However, the following 
snapshot is given by moving the shapes under the aperture by one grid cell, making the succession of snapshots temporarily dependent on each other, as compared to 
them being identical and independently distributed (i.i.d.) as in the spatial VSL setup.

D. Garber and J. Fiser                                                                                                                                                                                                                         Cognition 266 (2026) 106324 

2 



underlying structure of the environment. These individual scenes can be 
considered as randomly selected snapshots or glimpses of a small 
segment of a large grid-like environment populated with the spatial 
patterns defined by the underlying pair structures (Fig. 1 A). By gener
alizing this concept, we designed a new spatio-temporal VSL paradigm, 
in which instead of sampling random small scenes from this environ
ment, observers viewed a small part of a large environment built on the 
underlying pairs structure through an NxN-sized grid-shaped aperture 
while the large landscape kept shifting around under the aperture in the 
horizontal or vertical direction with a discrete step size of one cell and 
paused a bit after each step (Fig. 1C). This stimulus presentation can be 
conceptualized as if many scenes of the classical sVLS were laid down 
next to each other to make up a large surface representing the envi
ronment, and observers passively but dynamically explored this envi
ronment experiencing both dynamic and occlusion-based effects beyond 
mere statistical co-occurrences of shape items.

Due to the periodic shifting of the environment under the aperture 
with a step size of one cell, observers saw not only the complete 3-by-3 
tiling scenes themselves through the aperture but also, in two-thirds of 
the time, partial mixes of two such scenes. These cases led to partial 
presentations of the constituting shape pairs of the inventory when only 
one element of some pairs was visible. These partial presentations 
created noise as they introduced extra uncertainty about the true un
derlying structure of the input by providing evidence against the 
spatially fixed co-occurrence of the two elements of the pair. At the same 
time, this uncertainty could be counterbalanced by hypothesizing that 
observers make unconscious inferences based on the overall temporal 
coherence of the entire scene under the aperture over time due to the 
movement: “Although I see one half of a pair right now, this is because of 
the restriction of the aperture and the other half of that pair will reliably 
become visible after the next movement”. Thus, the paradigm allows 
testing the intricate three-way interactions between information about 
temporal and spatial statistics and the effects of additional constraints 
such as the edge of the aperture, occlusion, and motion coherence.

Using this paradigm, we conducted seven experiments in which we 
systematically varied: (1) the amount of uncertainty in the input 
regarding the underlying spatial and temporal structure of the stimuli, 
and (2) the strength of the inductive bias due to perceived global motion 
and the occlusion of shape elements in the scene -thereby assessing the 
effects and interactions between these factors during statistical learning 
(Table 1).

3. Experiments 1a,b: Extracting the underlying spatial 
structures from static and dynamic scenes

The interaction between spatial and temporal statistical structures 
during visual learning is unclear since adding temporal changes to the 
display, even if they are structured, could both help and hinder the 
process of extracting the underlying spatial structure of the presented 
scenes. Specifically, the previously discussed partial presentation of the 
pairs during transitions -which define the underlying structure in this 
paradigm- may impede statistical learning, as it reduces the spatial 
conditional probability between elements of each pair. To clarify the 
nature of this interaction within the standard VSL paradigm, we tested 
participants in the online version of the new stVSL paradigm in Exper
iment 1a using the same training structure and tests as in the classic sVSL 
study (Fiser & Aslin, 2001), while letting the scenes unfold over time. 
For controlled comparison, we also directly replicated online the clas
sical experiment of Fiser and Aslin (2001) (Experiment 1b).

3.1. Participants

40 participants gave informed consent prior to the experiments. 20 
(6 female, mean age 25, SD = 6.5) for Experiment 1a and 20 (7 female, 
mean age = 24.7, SD = 5.5) for Experiment 1b. The sample size was 
based on the original study by Fiser and Aslin (2001). Participants were 

recruited via prolific.co and received £ 2.5 for their contribution. For all 
experiments reported in this paper, all participants conducted the 
experiment at home on a laptop or desktop computer, and all partici
pants had normal or corrected-to-normal vision. All experiments re
ported in this paper were approved by the Hungarian United Ethical 
Review Committee for Research in Psychology (EPKEB).

3.2. Materials

The stimuli were taken from (Fiser & Aslin, 2001) and consisted of 12 
abstract black shapes on a white background. The shapes were grouped 
to form six pairs (two horizontal, two vertical, and two diagonal) 
randomly for each participant. 144 scenes were created by placing one 
horizontal, one vertical, and one diagonal pair in a 3 × 3 grid without 
any segmentation cues. The maximum horizontal and vertical extension 
of each shape was 50 % of the size of one grid cell.

Due to the nature of online experiments, the visual angle of the in
dividual shapes was not exactly the same for all participants, as they 
used different devices with varying screen sizes and resolutions. How
ever, since the image size was fixed (the 3 × 3 grid extended over 600 ×
600 pixels and was centered in the middle of the computer screen) with 
the viewing distance varying between 40 and 80 cm, and the stimuli 
were simple black shapes clearly presented in the middle of white cells, 
the variations in the conditions of the individual setups did not signifi
cantly modulate the visibility of the perceptual input.

3.3. Procedure

Participants in both experiments first passively observed scenes 
during the familiarization phase before completing the test phase. For 
the familiarization phase, participants received only minimal in
structions, stating that they should pay attention to what was happening 
on the screen as they would be asked simple questions about it later. The 
pair structure of the scenes was not mentioned.

In Experiment 1a, the 3 × 3 scenes moved in and out of the screen by 
one row or column at a time, depending on the direction of the motion, 

Table 1 
Summary of experiments in the present study. Conditions in the “Presentation 
Mode” column: i.i.d. – “Independent and Identically Distributed” condition, 
showing a sequence of individual scenes made of a 3 × 3 grid, with shapes in 
some grid cells. Scenes have abrupt onsets and offsets, with no relationship 
between the content of consecutive scenes. Temporal – Same as i.i.d., but 
consecutive scenes depict what would be visible when the 3 × 3 aperture shifts 
one grid step across an underlying larger field tiled with 3 × 3 small scenes. 
Temporal + Animation – Same as Temporal, but instead of abrupt onsets and 
offsets, an animation simulates the continuous shift of the underlying field. 
Conditions in the “Attention Check” column: + indicates that Attention check is 
applied during familiarization. – indicates that Attention check is not applied 
during familiarization.

Experiment Purpose/Question Presentation Mode Attention 
check

1
a Proof-of-Concept of stVSL 

paradigm
Temporal +
Animation

−

b Online replication of basic 
VSL

i.i.d. +

2

a
The effect of spatial noise, 
temporal coherence, and 
perceived motion in stVSL  

Global motion bias

Temporal +
Animation −

b Temporal −

c i.i.d. +

3

a
The limit of learning spatial 
structure from temporal 
information  

Interaction of global motion 
and occlusion biases

Temporal +
Animation +
Occlusion

+

b Temporal +
Occlusion

+
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starting from one completely visible scene in the first frame of the 
experiment. At each step, a segment of a new scene moved in, and a 
segment of the old one moved out. Since there were no segmentation 
cues at the scene boundaries between the abutting scenes of the un
derlying plane, the participants perceived the entire sequence as one 
continuous stream of randomly scattered shapes jointly changing the 
direction of movement at different “random” points in time. The change 
in the direction of movement was not truly “random” but always 
occurred at the multiples of three (after 6, 9, or 12 steps), so that at no 
point in the movie there were parts of more than two underlying 3 × 3 
scenes shown in the aperture. Each movement took 0.5 s and was 
animated as a constant speed translation along the horizontal or vertical 
axis, while the image stood still for two seconds between two successive 
movements. The 0.5-s duration for translation was fast enough so that 
even if participants could not perceive the actual shapes, they could 
automatically track their position during the translation. No two iden
tical pairs would ever be visible simultaneously within the aperture. 
Participants saw left, right, up, and down movements with occasional 
changes of the movement direction from one direction to one of the 
perpendicular directions (e.g., from horizontal move to either up or 
down) but never a complete reversal of direction (e.g., from up to 
down). Overall, all participants saw left, right, up, and down movements 
for the same number of steps.

In Experiment 1b, participants saw the scenes sequentially, each for 
two seconds with a one-second inter-trial interval, and the order of 
scenes was randomly chosen for each participant. In this “Independent 
and Identically Distributed” (i.i.d) condition, there is no link between 
the content of two consecutive scenes. Since the static input in Experi
ment 1b could be less engaging than the dynamic input in Experiment 
1a, a simple attention-check feature was included in Experiment 1b to 
ensure that participants remained engaged with the task. In an 
attention-check trial, text appeared in the central cell of the grid, 
prompting participants to press the spacebar. Simultaneously, five black 
squares appeared in randomly chosen cells of the grid. The attention 
check disappeared every 2 s and reappeared after 0.5 s. The number of 
times the attention check was shown before the space bar was pressed 
was recorded as the indicator of the participant’s attention level.

Individual scenes were seen for a longer duration in Experiment 1a 
than in 1b since they moved in and out of sight over several steps. 
Therefore, we used only half of the original 144 scenes (balanced for pair 
frequency and co-occurrence) in Experiment 1a. The amount of expo
sure was still not entirely identical in the two experiments as the 
familiarization phase took nine minutes vs. seven minutes and 12 s in 
Experiment 1a and Experiment 1b, respectively. In addition to the dif
ference in the number of scenes and exposure durations, two other as
pects prevented a direct comparison between the two experiments: the 
full vs. full+partial presentation of each scene and the added effect of 
motion in Experiment 1a. However, all these differences were inconse
quential as the goal of the study was not to compare the two setups 
quantitatively but to test whether participants can implicitly learn the 
pair structures in the dynamic stVSL setup.

The test phase was identical for both experiments. It consisted of 36 
2-alternative forced choice (2AFC) trials. In each trial, participants saw a 
real pair and a foil pair after each other (randomized order, two-second 
presentation, and one-second inter-stimulus-interval) and indicated 
which of the two was more familiar based on the familiarization phase 
by pressing “1” or “2” on the keyboard. Overall, six foil pairs, two 
horizontal, two vertical, and two diagonal ones, were created by re- 
combining shapes from different pairs of the familiarization phase. 
Each real pair was tested once with each foil pair. After the test phase, 
participants answered a series of open questions to assess their explicit 
knowledge of the pair structure and their previous experience with 
similar experiments (see Supplementary Materials for details).

Beyond the standard frequentist statistics analyses, we used Bayes 
Factors (BF) in this paper to assess the strength of the observed effects. 
These BFs were calculated by using the BayesFactor R package (Rouder, 

Morey, Speckman, & Province, 2012). Following a conservative 
approach, we counted our results as significant if our criteria for both p- 
values (<0.05) and BF (>3) were met.

3.4. Results and discussion

For both experiments, two participants were excluded for gaining 
verbalizable explicit knowledge of the pairs by the end of the practice 
session, since we were interested in implicit learning of the structures. 
The remaining participants in both experiments performed significantly 
above the chance level of 50 % (Experiment 1a: M(SE) = 57.7(2.4), t 
(17) = 3.18, p = 0.005, d = 0.75, BF = 8.8. Experiment 1b: M(SE) = 56.5 
(2.5), t(17) = 2.60, p = 0.019, d = 0.61, BF = 3.2. see Fig. 2).

These results show that participants successfully learned the spatial 
structure in both the classic i.i.d. and the novel spatio-temporal VSL 
setup, confirming that despite the increased noise due to the partial 
presentation of scenes and the effect of motion, participants could 
implicitly learn the pair structures in the dynamic stVSL setup. This 
confirmatory result is significant because the general finding in the 
literature is that statistical learning is very sensitive to the conditional 
probabilities between elements within a chunk: even small deviations 
from Prob(1.0) can severely affect learning. As Experiment 1b was a 
direct online replication of the previously lab-based spatial VSL exper
iment by (Fiser & Aslin, 2001), the close similarity between the results of 
Experiment 1b and that of the original study also suggests that the sVSL 
paradigm can be successfully transferred to an online environment for 
data collection.

4. Experiments 2a-c: The role of temporal coherence and 
perceived motion in learning spatial visual structures

After demonstrating in Experiment 1a that learning is possible in the 
spatio-temporal VSL (stVSL) setup, we asked how the different aspects of 
the input information contributed to learning in this paradigm. In 
Experiment 2a, we introduced pairs with different levels of spatial noise 
(quantified by the number of partial presentations) to the stVSL para
digm to test whether the strength of learning is a simple function of the 
amount of this type of noise. In Experiment 2b, we removed the ani
mation of motion while leaving the temporal coherence of subsequent 
frames intact to assess the effect of temporal coherence across scenes in 
the absence of obvious motion cues. In Experiment 2c, we eliminated 
both motion cues and temporal coherence to provide experimental ev
idence for their joint effect on learning spatial patterns.

Fig. 2. - Results of Experiments 1a and 1b. The y-axis represents the participants’ 
mean performance on the 2-alternative forced choice (2AFC) trials, used as the 
measure of learning of pairs embedded in the familiarization stream. Error bars 
represent the standard error. The dotted line indicates the chance level of 50 %. 
Stars represent the significance of the difference from chance. * p < 0.05; ** p 
< 0.01.
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4.1. Participants

267 participants gave informed consent prior to the experiments. 88 
(39 female, mean age 26.9, SD = 8) for Experiment 2a, 89 (31 female, 
mean age 33.4, SD = 10.9) for Experiment 2b, and 90 (30 female, mean 
age 26.2, SD = 8.9) for Experiment 2c. The sample size was chosen to 
achieve a power of about 80 % for three parallel comparisons (i.e., alpha 
= 0.166) assuming medium effect sizes (cohen’s d = 0.5) and rounded 
up to account for expected exclusions. Participants were recruited via 
prolific.co and received £2.5.

In Experiment 2a, three participants were excluded from the analysis 
due to response bias, and another 15 participants were removed for 
acquiring explicit knowledge of the structure of the task. Response bias 
was defined as the proportion with which participants used one of the 
two response keys (“1” and “2”), and participants who were 2.5 SD away 
from the mean were excluded. In Experiment 2b, six participants were 
removed from the analysis due to response bias, one participant was 
removed due to failing the attention checks (response time to attention 
check >3 SD), and 10 participants were removed for acquiring explicit 
knowledge of the structure of the task. In Experiment 2c, two partici
pants were removed from the analysis due to response bias, two addi
tional participants due to failing attention checks, and 10 participants 
were due to acquiring explicit knowledge of the structure of the task. For 
data of explicit participants, see the Supplementary materials.

4.2. Materials and procedure

The materials were identical to those in Experiment 1a. The general 
procedure of Experiment 2a was identical to Experiment 1a, with the 
exception of the specific movement directions. Participants no longer 
saw balanced movement enforced by the same number of shifts to all 
directions, but instead, they were randomly assigned to one of two 
conditions, having more horizontal or more vertical movement on 
average. In the horizontal condition, 75 % of the movements were along 
the horizontal axis, with equal amounts of movements to the left and to 
the right, and 25 % of the movements were along the vertical axis, with 
equal amounts of movements up and down. This was implemented by 
changing the direction of movement after 9, 12, 15, or 18 steps for 
horizontal movement and after 3 or 6 steps for vertical movement. As a 
result, horizontal pairs had more partial presentations than vertical 
pairs, as they were shown partially only during horizontal movement. In 
the vertical condition, the pattern of movement and, consequently, the 
occurrence of partial presentations were reversed. For the sake of clarity 
and simplicity, we will use the term parallel pairs for pairs aligned with 
the predominant movement (e.g., horizontal pair in the horizontal 
condition) and orthogonal pairs for pairs with orientation orthogonal to 
the predominant movement (e.g., vertical pairs in the horizontal con
dition) to refer to both conditions simultaneously.

Having a design with parallel and orthogonal pairs resulted in dif
ferences in the amount of partial presentation, that is, in noise across the 
three types of pairs of the inventory. In both the horizontal and vertical 
conditions, the diagonal pairs had the overall highest number of partial 
presentations since they were shown partially during both horizontal 
and vertical movement. The conditional probabilities of the shapes of 
one pair (the probability of one shape of a pair being visible when the 
other shape is visible) were 0.6 for diagonal, 0.75 for parallel, and 
0.0.916 for orthogonal pairs.

The only difference between Experiments 2a and 2b was that the 
animated motion seen in Experiment 2a, showing a smooth transition of 
the shapes during scene change was removed in Experiment 2b (Fig. 3). 
As a result, the temporal coherence across scenes was identical in 2a and 
2b, i.e., the static pictures at the pauses followed the same sequence in 
the two experiments. However, the strong perceptual cue to temporal 
coherence given by the smooth motion pattern was present only in 
Experiment 2a, allowing a separation of the effects of the spatio- 
temporal co-occurrence statistics itself and the effect of perceived 

coherent motion of the scene. Since the statically presented inputs in 
Experiment 2b could be less engaging, the same attention check was 
included during the familiarization phase as in Experiment 1b.

Compared to Experiment 2b, the additional difference in Experiment 
2c was the removal of temporal coherence of the stimuli presentation 
(Fig. 3). Participants still saw the same still images as in Experiments 2a 
and 2b between movements. However, instead of moving them in and 
out of the grid by one cell at a tim4e, the scenes were temporally shuffled 
and shown in random order. This manipulation achieves exactly the 
same level of spatial noise in the visual input as in Experiments 2a and 
2b but with an i.i.d. presentation instead of a temporally structured one. 
As before, the same attention check was included during the familiar
ization phase of Experiment 2c as in Experiment 1b.

4.3. Results

We performed one-sample t-tests for each of the three experiments 
both individually for the different pair types (parallel, orthogonal, and 
diagonal) and collapsed over pair types. In the collapsed analysis, sig
nificant learning occurred in all three experiments (Exp 2a M(SE) = 56.7 
(1.1), t(69) = 5.96, p < 0.001, d = 0.71, BF = 136,989; Exp 2b M(SE) =
53.4(1.2), t(71) = 2.84, p = 0.012, d = 0.33, BF = 5.2; Exp 2c M(SE) =
52.3(1.2), t(75) = 2.18, p = 0.032, d = 0.25, BF = 1.2). All significance 
tests reported throughout the present study are corrected for multiple 
comparisons as appropriate using the Holm-Bonferroni method (Holm, 
1979).

The analysis of data in Experiment 2a for different pair types showed 
that participants’ performance for the orthogonal (M(SE) = 57.1(2.3), t 
(69) = 3.17, p = 0.018, d = 0.38, BF = 12.2) and the diagonal (M(SE) =
58.7 (2.0), t(69) = 4.4, p < 0.001, d = 0.53, BF = 535) pairs were 
significantly different from chance, while the performance for the par
allel pairs was not: M(SE) = 54.4(2.0), t(69) = 2.2, p = 0.157, d = 0.26, 
BF = 1.2. In Experiment 2b, the same separate analysis showed that the 
performance for all of the three pair types failed to deviate significantly 
from chance: parallel (M(SE) = 52.9(2.2), t(71) = 1.3, p = 0.006, d =
0.15, BF = 0.29), orthogonal (M(SE) = 51.2(2.1), t(71) = 0.5, p = 0.999, 
d = 0.06, BF = 0.15), diagonal (M(SE) = 56.0 (2.2), t(71) = 2.7, p =
0.064, d = 0.32, BF = 3.5). In Experiment 2c, performance for neither of 

Fig. 3. Presentation Modes in Experiments 2a-c. This graphic visualizes the 
temporal relationship of subsequent spatial patterns in Experiments 2a-c. In 
Experiments 2a and 2b, visualized in red, the visual aperture shifts by one cell 
at a time, leading to a sequence of temporally coherent scenes. In Experiment 
2c, visualized in yellow, the visual aperture visits the same overall parts of the 
environment, leading to the same number of partial presentations of pairs. 
However, as visualized with the yellow arrows, the order of visual scenes is 
random and, therefore, not temporally coherent. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web 
version of this article.)
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the three pair types was significantly different from chance: parallel (M 
(SE) = 48.9(2.0), t(75) = − 0.55, p = 0.999, d = 0.06, BF = 0.146), 
orthogonal (M(SE) = 53.4(1.95), t(75) = 1.75, p = 0.338, d = 0.2, BF =
0.54), diagonal (M(SE) = 55.5 (2.3), t(75) = 2.4, p = 0.112, d = 0.276, 
BF = 1.86) (see Fig. 4).

For further analysis, we entered Experiment 2a, 2b and 2c into one 3 
× 3 mixed-ANOVA with pair type (parallel, orthogonal, diagonal) as a 
within-subject factor and experiment (2a, 2b, 2c) as a between-subject 
factor. The results showed a significant main effect of pair type (F(2, 
430) = 3.74, p = 0.025, η 2 = 0.012) and of experiment (F(2, 215) =
3.22, p = 0.042, η 2 = 0.012) but no significant interaction (F(4, 430) =
0.62, p = 0.649, η 2 = 0.004). Tukey’s SHD post-hoc tests showed that 
the diagonal pairs were learned significantly better than the parallel 

pairs (p = 0.020, BF = 3.6) and that learning in Experiment 2c (i.i.d. 
condition) was significantly worse than in Experiment 2a (p = 0.043, BF 
= 3.2) (see Fig. 4).

4.4. Discussion

The overall pattern of the results suggests first that while participants 
learned pairs in all three experiments, there was a significant modula
tion in the amount of learning from the temporally coherent condition 
(Exp. 2a) to the condition without perceived motion (Exp. 2b) and to the 
setup without temporal coherence (Exp. 2c). This gradual modularity 
effect is direct experimental evidence that participants use global tem
poral regularities to learn local spatial patterns from passive exposure 
and it furthermore supports the idea that the perceived motion is an 
important general cue to temporal regularity.

The second surprising observation is that beyond showing a signifi
cant general sensitivity to motion and temporal coherence, the amount 
of learning did not directly reflect the local spatial statistical structure of 
the stimuli. Participants learned the diagonal pairs better than either the 
parallel pairs or orthogonal pairs despite their lower conditional prob
ability (higher statistical noise) and despite being less aligned with the 
direction of motion. This finding suggests the existence of substantial 
additional factors influencing this kind of implicit statistical learning 
beyond the co-occurrence statistics of elements.

5. Experiment 3a: Full generalization from purely temporal 
statistics to static spatial structures

The previous set of experiments established that implicit learning of 
spatial statistics present in the sensory input is profoundly affected by 
factors beyond the spatial co-occurrences of elements, such as temporal 
coherence and perceived motion, yet it did not clarify the extent of these 
effects. In Experiment 3a, we focused on the first of the two findings of 
Experiments 2a-c and directly compared the effect of spatially and 
temporally conveyed information on learning spatially defined static 
patterns. In particular, we modified the experimental design and tested 
whether participants would be able to learn static spatial structures of 
the environment when they never see these spatial patterns during 
familiarization, but they need to infer their existence implicitly from 
dynamically presented partial information. In addition, we explored the 
nature of the interaction between temporal and spatial statistics and the 
general inductive biases that emerge from detecting global motion and 
occlusion.

5.1. Participants

132 (60 female, mean age 27.1, SD = 11.1) participants gave 
informed consent prior to the experiments. The sample size calculation 
built on the previous experiments but assumed a lower alpha level of 
0.005 to account for the higher number of multiple comparisons (more 
tests in this experiment) and assumed a higher rate of exclusions. Par
ticipants were recruited via prolific. co and received £ 2.3.

Prior to analysis, two participants were removed for response bias 
(bias for one of the two responses buttons >2 SD), two participants were 
excluded for failing the attention check (having the attention check 
message appear at least 10 times over all three instances of the attention 
check), and 18 participants were removed for acquiring explicit 
knowledge of the structure of the task (for data of explicit learners see 
Supplementary Materials).

5.2. Materials

This experiment used the same materials as the previous experi
ments, but with one important difference. Throughout the experiment, a 
rectangular static occluder strip image with 1/f-noise content and 50 % 
of the width and height of the grid cells was placed over the middle row 

Fig. 4. – Results of Experiments 2a-c. The y-axis represents the performance on 
2AFC trials. Error bars represent the standard error. The dotted line indicates 
the chance level. Stars represent the significance of statistical tests: * p < 0.05; 
** p < 0.01; *** p < 0.005. Top panel: results of pair type by experiment. 
Middle panel: main effects of experiment averaged over pair types. Lower 
panel: main effects of pair type averaged over experiments.
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or column of the grid. This strip covered the central part of the cells in 
the middle row (or column) so that the shape present in these cells was 
not visible during the static sections of the presentation when the 
movement was paused (Fig. 5).

5.3. Procedure

The general procedure was built on Experiment 1a but -beyond the 
occluder- introduced one more change to the familiarization phase to 
achieve the desired temporal and spatial presentation modes of pairs. 
Every participant in Experiment 3a saw movement along only one 
orientation, i.e., only horizontal movement (left, right) or vertical 
movement (up, down). Participants first saw movement in one direction 
for 60 steps, then movement in the opposite direction for 60 steps, then 
48 steps in the first movement direction again and finally, 48 steps in the 
second movement direction. The static occluder overlaid over the three 
central grid cells was always perpendicular to the movement direction. 
At each movement direction change, an attention check appeared, 
identical to the one used in Experiment 1b.

The combined result of this change and the superimposed occluder 
was a more extreme separation between the underlying pairs in terms of 
their defining type of statistics. Orthogonal pairs (pairs perpendicular to 
the movement direction) were only presented spatially and never 
temporally; that is, the two shapes of these pairs always appeared only 
together, never alone, and they never followed each other temporarily in 

the same grid cell. In contrast, parallel pairs (pairs aligned with the 
movement direction) were never visible next to each other in the still 
images between movements (2 s) and, as mentioned in Exp 1, were 
essentially not visible next to each other during the short movement 
period (0.5 s). However, the shapes of the parallel pairs had perfect 
temporal coherence as they always followed each other in the same 
position of the grid. Diagonal pairs represented a noisier version of the 
parallel pairs as they had the same type of temporal coherence and 
essential lack of spatial co-occurrence as parallel pairs, but instead of 
following each other temporarily in the same grid cell, the two shapes of 
the pairs also had a spatial offset.

In the test phase following the nine-minute familiarization phase, 
participants completed three types of 2AFC tests.

The Standard Learning Trials test was identical to those in previous 
experiments, pitting against each other real vs. foil pair tests in each 
trial. In these trials, the orientations of the two alternatives within a trial 
were always the same.

In the Spatial Learning Trials test, the two options of a trial presented 
the same shapes of one given real pair but the shapes were presented 
once in their correct spatial arrangement (e.g., horizontal) and once in 
an opposite arrangement (vertical). Diagonal pairs were tested against 
themselves in a different diagonal arrangement. This test measured the 
participants’ additional knowledge of the spatial structure of the pairs 
beyond the co-associations of the shapes of the pair.

In the Bias Trials test, the same logic was applied as in the Spatial 
Learning Trials, but a foil pair was used for each trial instead of real pairs. 
In these trials, there was no correct orientation and, thus, no correct 
answer since these pairs were not seen during the familiarization phase. 
Therefore, the test was suitable for assessing the participants’ overall 
bias in choosing either the horizontal or the vertical orientation, inde
pendent of any knowledge of pair structures.

Participants first completed the Spatial Learning Trials and Bias Trials 
intermixed, followed by the Standard Learning Trials. This order was 
chosen to ensure minimal interference between the test trials.

5.4. Results

In the Standard Learning Trials, participants’ performance with par
allel pairs was significantly above chance: M(SE) = 58.2(2.4), t(109) =
3.4, p = 0.004, d = 0.33, BF = 23.5. The performance with orthogonal 
(M(SE) = 48.6(2.6), t(109) = − 0.52, p = 0.692, d = 0.05, BF = 0.12) and 
diagonal (M(SE) = 54.5 (2.3), t(109) = 1.99, p = 0.148, d = 0.19, BF =
0.70) pairs was not different from chance. These results indicate that 
when the orientation of the true and foil pairs in the test trial was not 
different, participants showed evidence of learning only the “parallel” 
pairs -that is, the pairs oriented parallel to the direction of motion and 
perpendicular to the occluder, for which evidence was provided by 
temporal transitions. Meanwhile, participants failed to show learning 
the “orthogonal” and “diagonal” pair structures for which no evidence 
was provided by direct temporal transition but only by direct or more 
indirect spatial co-occurrence.

In the Spatial Learning Trials, performance with parallel pairs was 
significantly above chance: M(SE) = 65.5(2.7), t(109) = 5.68, p ≤0.001, 
d = 0.54, BF = 1.0*105. The performance with orthogonal pairs was 
significantly below chance (M(SE) = 36.8 (2.6), t(109) = − 5.2, p 
≤0.001, d = 0.49, BF = 1.1*104), while the performance with diagonal 
pairs was not different from chance (M(SE) = 52.5 (2.6), t(109) = 0.95, 
p = 0.692, d = 0.09, BF = 0.16). These results confirm that when the 
shapes in the two test scenes were the same and thus the identity of the 
shapes in the pairs of the two alternative choices could not help the 
decision, participants’ choices were highly influenced by the direction of 
the general motion of the patterns within the aperture. Importantly, this 
influence was a general motion bias rather than an integrated (shape 
identity + pair orientation) knowledge since participants erred signifi
cantly against the correct orientation, with pairs having their true 
orientation orthogonal to the motion direction.

Fig. 5. – Familiarization phase of Experiment 3a + b. Experiment 3a + b intro
duce two key changes to the basic stVSL setup. (1) Participants see only either 
horizontal or vertical movement (counter-balanced between groups). (2) An 
occluder is overlaid over the three central grid cells perpendicular to the 
movement direction. The combined effect of these two changes is that pairs 
aligned with the movement direction are now presented only temporally, while 
pairs perpendicular to the movement direction are only presented spatially. The 
graphics visualize the condition using only horizontal motion. The top panel 
directly shows what participants see in the experiment. The bottom panel is 
only for illustration purposes as it highlights the underlying structure by color 
coding pairs and making the occluder transparent.
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Since in the Bias Trials, there were no correct response options, the 
data for all parallel and orthogonal foil pairs was considered together 
and scored for choosing the parallel or orthogonal option. The trials for 
diagonal pairs were not considered in this analysis. For every partici
pant, the proportion of parallel choices was expressed in percent and 
then subtracted by 50, to get a measure of bias away from a chance level 
of zero. Positive bias suggests more parallel choices and negative bias 
suggests more orthogonal choices. One-sample t-tests showed that par
ticipants chose the parallel options significantly more often: M(SE) = 8.0 
(2.0), t(109) = 3.99, p ≤0.001, d = 0.38, BF = 149.

For further analysis, the data of the Standard Learning Trials and 
Spatial Learning Trials were entered into one 2 × 3 mixed-ANOVA with 
test type (Standard Learning Trials, Spatial Learning Trials) and pair type 
(parallel, orthogonal, diagonal) as within-subject factors. The results 
showed a significant main effect of pair type (F(2, 545) = 25.6, p 
≤0.001, η 2 = 0.19) and a significant interaction (F(4, 545) = 7.4, p 
≤0.001, η 2 = 0.06). The main effect of test type was not significant, F(1, 
545) = 1.28, p = 0.26, η 2 = 0.01. Tukey’s SHD post-hoc tests showed 
significantly higher performance for the parallel pairs than the orthog
onal pairs in the Standard Learning Trials (p = 0.025), and in the Spatial 
Learning Trials (p ≤0.001). The diagonal pairs showed significantly 
higher performance than the orthogonal pairs only in the Spatial 
Learning Trials (<0.001). The parallel pair showed significantly higher 
performance than the diagonal pair only in the Spatial Learning Trials (p 
= 0.001).

To test whether the high deviation from chance in the Spatial 
Learning Trials was based solely on the bias also measured in the Bias 
Trials or if it additionally included knowledge about the orientation of 
the specific pairs, a direct comparison of both measures was conducted. 
For this purpose, the results for the parallel pairs and the orthogonal 
pairs in the Spatial Learning Trials were separately transformed into a 
measure of deviation from chance, as described for the Bias Trials. Paired 
t-tests showed that the deviation from chance for the parallel pairs (t 
(109) = − 2.60, p = 0.021, d = 0.30, BF = 2.6) but not the orthogonal 
pairs (t(109) = − 1.92, p = 0.058, d = 0.22, BF = 0.62) was significantly 
higher than the bias measured in the Bias Trials. This suggests that 
participants have knowledge about the actual orientation of pairs they 
have learned. The results for all test types are visualized at the top in 
Fig. 6.

5.5. Discussion

In this setup, the participants were able to learn only the temporally 
presented parallel pairs and not the spatially presented perpendicular 
ones. The results of the Bias Trials suggest that participants had a 
dominant overall bias in the test trials to choose the pair with an 
orientation that aligned with the movement direction perceived during 
the training, regardless of what the true orientation of the pair was 
originally. Nevertheless, participants did have knowledge about the 
actual orientation of pairs they had learned and the effect of this 
knowledge was detectable in the difference of their responses between 
parallel and orthogonal pairs. While the exact nature of this interaction 
between learning features of specific pairs, the perceived movement 
direction, and the observed overall bias remain unclear, these results 
highlight that statistical learning goes beyond simple counting of lower 
level co-occurrence statistics and also incorporates top down effects.

6. Experiment 3b: Dominance of perceived overall movement 
over learned statistics

Was the effect in Experiment 3a driven predominantly by the un
derlying spatio-temporal co-occurrence statistics, or was it also influ
enced by broader features of the stimulus presentation, such as the 
perceived overall motion of the scenes or the static structure of the 
occluder? Experiment 3b addressed this question by using the same 
spatio-temporal structure as Experiment 3a, retaining the occluder but 

removing the movement animation.

6.1. Participants

117 (52 female, mean age 30.4, SD = 11.9) participants gave 
informed consent prior to the experiments. Participants were recruited 
via prolific.co and received £ 2.3.

Prior to the analysis, two participants were removed for response 
bias (bias for one of the two response buttons >2 SD), six participants 
were excluded for failing the attention check (having the attention check 
message appear at least 10 times over all three instances of the attention 
check), and 7 participants were removed for acquiring explicit knowl
edge of the structure of the task (for data of explicit learners see Sup
plementary Materials).

Fig. 6. Results of Experiments 3a and 3b. The y-axis represents the partici
pants’ mean performance on 2AFC trials. Error bars represent the standard 
error. The dotted line indicates the chance level of 50 % or 0 %. Stars represent 
the significance of the difference from chance. * p < 0.05; ** p < 0.01; *** p <
0.005. The Standard Learning Trials was a standard learning test using one real 
pair from the training phase and one foil pair created by combining shapes of 
two real pairs. It measures learning of item co-occurrence. The Spatial Learning 
Trials test showed the same real pair twice. Once in its correct orientation and 
once rotated by 90◦. It measures learning of the spatial arrangement of learned 
pairs. The Bias Trials test showed the same foil pair twice. Once horizontally 
and once vertically. There is no correct response, and it measures bias for one of 
the orientations.
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6.2. Materials and procedure

The material was the same in Experiment 3b as in Experiment 3a. 
The procedure was also identical between the experiments in every way 
apart from the movement animation. While in Experiment 3a, the 
stimulus displays drifted, and hence the shapes moved in and out of the 
visible aperture with a 0.5-s animated movement between the 2-s steady 
sections, in Experiment 3b, the animation was replaced by a 0.5-s blank 
screen. Note that the spatial and temporal structure was not altered by 
this manipulation. Parallel pairs were still presented only temporally, 
and orthogonal pairs were still presented only spatially.

6.3. Results

6.3.1. Standard learning trials
One-sample t-tests showed that in the Standard Learning Trials the 

performance for all of the pairs was not different from chance: parallel 
(M(SE) = 51.3(2.5), t(99) = 0.51, p = 0.99, d = 0.05, BF = 0.125), 
orthogonal (M(SE) = 48.5(2.9), t(99) = − 0.51, p = 1.00, d = 0.05, BF =
0.126), diagonal (M(SE) = 50.0(2.9), t(99) = 0.00, p = 1.00, d = 0.00, 
BF = 0.11). Overall, these results suggest that participants did not reli
ably learn any pairs in this experiment.

6.3.2. Spatial learning trials
One-sample t-tests showed that in the spatial-real test, the perfor

mance for all of the pairs was not different from chance: parallel (M(SE) 
= 47.0(2.7), t(99) = − 1.09, p = 1.00, d = 0.11, BF = 0.198), orthogonal 
(M(SE) = 56.5(2.7), t(99) = 2.41, p = 0.107, d = 0.24, BF = 1.7), di
agonal (M(SE) = 51.5(2.5), t(99) = 0.59, p = 1.00, d = 0.06, BF = 0.13).

6.3.3. Bias trials
Data for this test was converted to a measure of bias away from 

chance, as in Experiment 3a. One-sample t-tests showed that partici
pants chose the orthogonal options significantly more often: M(SE) =
− 9.0(2.0), t(99) = − 4.55, p ≤0.001, d = 0.46, BF = 1051.

To test whether the significant difference between parallel and 
orthogonal pairs in the Spatial Learning Trials, found in Experiment 3a 
along the direction of the overall bias (results of Bias Trials), is also 
present here, a paired t-test was performed. The frequentist analysis of 
the results showed significantly higher performance for the orthogonal 
pair trials (t(99) = − 2.16, p = 0.033, d = 0.35), but Bayesian evidence 
did not provide strong support for this conclusion (BF = 1.03). To test 
whether the results of the Spatial Learning Trials were in line with the 
bias measured in the Bias Trials, a direct comparison of both measures 
was conducted. For this purpose, the results for the parallel pairs and the 
orthogonal pairs in the Spatial Learning Trials were separately trans
formed into a measure of deviation from chance, as described for the 
Bias Trials. Paired t-tests showed no deviation from the bias measured in 
the Bias Trials for either the parallel pairs (t(99) = − 2.20, p = 0.061, d =
0.25) or for the orthogonal pairs (t(99) = − 0.87, p = 0.389, d = 0.11), 
but there was strong evidence for ruling out learning only in the case of 
orthogonal pairs (BF = 0.16) not for the parallel ones (BF = 1.1). The 
results for all test types are visualized in Fig. 6.

6.4. Discussion

Overall, we found no learning of specific pairs in this setup despite 
the fact that not only the static spatial statistics but also the instructions 
for Experiments 3a and 3b were identical, clearly stating that shapes 
would be moving in and out horizontally. Thus, participants in Experi
ment 3b were aware of the movement of the underlying scene even 
without directly observing it through animation. In addition, the spatial 
structures in Experiment 3b were more isolated and fewer in any given 
scene compared to setups without an occluder; they were fully pre
dictable when reappearing from behind the occluder and were not 
overshadowed by global motion. Still, participants were equally unable 

to learn the orthogonal pairs in both experiments. Meanwhile, the par
allel pairs were also not learned in Experiment 3b, showing a significant 
drop in performance compared to Experiment 3a, despite the two ex
periments having identical temporal statistics aside from the presence of 
animation. These results suggest that the learning of temporally pre
sented parallel pairs in Experiment 3a was not driven primarily by 
temporal regularities, but rather resulted from a synergistic interaction 
between the statistical structure and the visually observed global 
movement.

Importantly, while in Experiment 3a participants showed an overall 
bias to choose options aligned with the movement direction, partici
pants in Experiment 3b preferred options perpendicular to that direc
tion. This shift in biases suggests that while in Experiment 3a the overall 
bias was induced by the observed general movement, the opposite bias 
observed in Experiment 3b was due to the static spatial layout defined by 
the orientation of the occluder and the shapes of the perpendicular pairs 
seen next to each other. These static-spatial-layout-based statistics were 
also available in Experiment 3a, but they were apparently over
shadowed by the bias generated by the perceived global movement. 
Thus, our combined results from the two experiments highlight the 
flexible combination of local statistics and general biases according to 
their relative salience during the statistical learning process.

7. General discussion

7.1. Synthesis of results

Utilizing a novel VSL paradigm, the present study provides a sys
tematic exploration of three major factors influencing the formation of 
internal representations in humans through implicit statistical learning: 
(a) the noisiness of the statistical contingencies available to the observer, 
(b) the interplay between purely spatial and purely temporal statistics 
during learning, and (c) the extent and nature of modulatory effects 
from pre-existing biases.

Assessing the first factor, the effect of noise is important because, by 
definition, lowering the transitional or co-occurrence probabilities of 
elements in sensory input (i.e., increasing noise) should hinder statistical 
learning and some informal results support this reasoning. However, the 
context and nature of the noise matter, as they can also create situations 
where reduced local transitional probabilities actually enhance the 
overall learning of structure (Gómez, 2002). Our results confirm this 
two-sided effect of noise. In our paradigm, observers were able to 
implicitly learn purely spatial visual structures, and this learning was 
not significantly affected by the presence of added spatial statistical 
noise, as evidenced by the lack of performance difference between Ex
periments 1a and 1b.

In contrast, this learning was strongly influenced by factors beyond 
purely spatial statistical probabilities -namely, the presence of temporal 
statistics derived from the coherent movement of the stimulus (Experi
ment 2c). This suggests that even in the most restricted version of 
coexisting spatial and temporal statistics -where the underlying struc
ture is purely spatial and the temporal statistics can be clearly factorized 
away from the spatial structure by attributing them to global motion- the 
process of learning spatial structures in the world does not rely solely, or 
even predominantly, on momentary spatial co-occurrences, but also on 
temporal aspects of the input. This nontrivial effect is clearly demon
strated by the surprising superiority in learning diagonal pairs in 
Experiment 2, despite these having the highest level of spatial noise. By 
adding an occluder to the scene, we assessed the limits of this interaction 
-using temporal statistics to learn spatial structures- and found a com
plete transferability: purely spatial structures were learned from 
temporally presented statistical input without any direct presentation of 
the true spatial layout (Experiments 3a and 3b).

Regarding the third factor, the extent and nature of modulatory ef
fects from pre-existing biases, the findings of Experiment 3 point to a 
more complex influence than the simple transfer of temporally 
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presented statistics to the formation of spatial structure representations. 
The Bias test results from Experiments 3a and 3b indicate that high-level 
knowledge of the same biasing information alone is insufficient to 
initiate an interaction between temporal statistics and the implicit 
learning of spatial structure. Although participants in Experiment 3b 
were fully aware of the direction of global motion during familiariza
tion, this knowledge itself did not manifest as an implicit bias: in both 
the Bias test trials (using random pairs) and the Spatial test trials (using 
shapes from true pairs), participants tended to select pairs oriented 
consistently with the occluder’s orientation during familiarization. Only 
the presence of a directly observable animation cue in Experiment 3a 
reversed this pattern, resulting in a bias toward the direction of motion 
in both the explicit Bias test and the more implicit Spatial test, effec
tively overriding the occluder’s influence. The necessity of presenting 
global motion information in a sensory (rather than purely conceptual) 
format in order to influence implicit learning and generalization un
derscores a key distinction between the mechanisms underlying implicit 
sensory inference and explicit causal reasoning.

Interestingly, although the motion-based bias in Experiment 3a also 
influenced the Standard test, the deviation from chance was smaller for 
both parallel and orthogonal pairs compared to the Spatial test in the 
same experiment—eventhough the foils in the Standard test could be 
rejected based on both orientation and shape identity, whereas in the 
Spatial test only orientation could be used. This suggests an interplay 
more complex than simple additivity among shape familiarity, pair fa
miliarity, motion-biased familiarity of pair orientation, and occlusion- 
based bias.

In sum, the general message of our present study is twofold. First, we 
found that even the most restricted combination of spatial and temporal 
aspects in the input -alongside a purely spatial underlying structure- 
produces results that cannot be predicted by simply extrapolating from 
prior studies of spatial and temporal statistical learning conducted in 
isolation. This suggests that perceiving and learning spatial and tem
poral regularities through VSL are not two separate, independent pro
cesses, but rather two intimately interacting components of an 
integrated mechanism. While this conclusion may not be entirely sur
prising, the extent of the interaction between spatial and temporal as
pects of the input has not been clearly demonstrated before. Moreover, 
the vast majority of statistical learning studies do not investigate situ
ations in which spatial and temporal aspects are combined. Therefore, 
our results should motivate the development of more sophisticated 
paradigms to systematically explore this integrated learning mechanism.

Second, even when combined, contingency-based low-level spatio- 
temporal statistical learning is not an independent process operating 
separately from more abstract aspects of the observer’s internal 
knowledge. In parallel with learning specific chunks of the input scenes 
based on low-level spatio-temporal co-occurrence statistics, people also 
automatically develop various higher-level representations of general 
features of the input (e.g., variability of the input, overall motion di
rection, presence of an occluder, etc.). This knowledge generates biases 
that interact with -and strongly influence- implicit spatial structure 
learning on equal footing with low-level statistical contingencies. These 
higher-level biases are typically more general and can influence the 
learning process in a non-local manner -for example, by enhancing the 
learning of all spatial co-occurrence statistics that share orientation with 
the direction of global motion.

The complex and unexpectedly strong interactions among global 
motion-based and occlusion-based biases, along with the spatial and 
temporal statistics of the input -including the complete transfer of 
temporally presented correlational information to spatial knowledge- 
pose a serious challenge to traditional computational explanations of 
VSL based solely on co-occurrence or transitional probability counting. 
Instead, they support a shift away from this currently dominant inter
pretation of visual statistical learning toward a view of VSL as a flexible 
inference-making mechanism -one that continuously integrates various 
types of sensory and knowledge-based evidence to produce a fuller 

interpretation of scenes during perception and learning, as proposed in 
Fiser and Lengyel (2022).

7.2. Relation to previous research

A few earlier statistical learning studies have already investigated 
the joint learning of temporal and spatial regularities. These studies 
found that infants could learn spatio-temporal sequences defined by the 
order of global positions (Kirkham, Slemmer, Richardson, & Johnson, 
2007), that adults could transfer visually learned spatial associations to 
detect some of the same associations when presented temporally and 
vice versa (Turk-Browne & Scholl, 2009), and that spatio-temporal 
regularities could guide attention (Xu, Theeuwes, & Los, 2023). How
ever, these studies primarily focused either on demonstrating the exis
tence of such learning (e.g., Can we use spatial and temporal statistics 
concurrently at all for learning?) or on specific applications of the learned 
spatial and/or temporal statistics (e.g., Can we use a subset of the learned 
temporal statistics in spatial tasks and vice versa? Can we use learned spatial 
or temporal statistics to guide attention?).

The current work extends these previous studies in multiple ways. 
For example, while it has been shown that VSL is flexible enough to 
support successful performance on a temporal test after learning a 
spatial structure, and vice versa (Turk-Browne & Scholl, 2009), these 
findings can be explained by assuming that learning either type of sta
tistics results in general associations between shapes. However, this does 
not demonstrate a higher level of complexity -namely, that participants 
retained any meaningful spatial structure after purely temporal learning 
(or vice versa) beyond simple co-association. In contrast, the current 
study connects the two domains in an ecologically relevant way by 
directly investigating the extent to which temporal coherence during 
learning can establish spatially defined structures, such as an oriented 
pair. Our results show that this learning goes beyond simple co- 
association of visible elements in the spatial structure and can operate 
through unconscious inference based purely on temporal structural 
information.

Similarly, Tummeltshammer and colleagues presented infants with a 
spatial structure setup in their spatial context condition that resembled 
the structure used in the current stVSL paradigm (Tummeltshammer, 
Amso, French, & Kirkham, 2017). However, in their trials, shapes 
entered from one end of the screen, moved across it in a single direction, 
and exited at the other end -thus introducing a temporal order to stimuli 
that were intended to be spatially defined. Furthermore, the same shape 
pairs appeared multiple times simultaneously on the screen, potentially 
introducing an uncontrolled pop-out effect of spatial regularity. In 
contrast, such effects can either be avoided or systematically studied 
-both in isolation and in interaction- using our stVSL setup, enabling 
more comprehensive conclusions about these interactions.

The most relevant prior work is a study demonstrating that, when 
possible, observers implicitly form temporal sequences based on spatial 
configurations rather than on single objects in a multi-element display 
(Yan, Ehinger, Pérez-Bellido, Peelen, & de Lange, 2023). This work can 
be viewed as complementary to ours: their main focus is the role of 
spatial regularities in the acquisition and perception of temporal pat
terns, whereas we focus on the role of temporal regularities in the 
acquisition of spatial patterns. Once these two questions are sufficiently 
understood in isolation, our setup could be extended to combine them in 
a single paradigm to investigate the numerous interconnected levels of 
spatial and temporal organization formed in real-world visual input, as 
our temporally presented spatial patterns could be arranged arbitrarily 
to predict each other.

The current work is also related to studies on learning spatial and 
temporal regularities outside the field of VSL. A special case of learning 
spatial representations from temporal statistics is investigated by studies 
of the trace learning rule, which explore how invariant object repre
sentations can emerge in an unsupervised manner by temporally asso
ciating different observed spatial patterns (Wallis & Rolls, 1997). 
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However, these studies address a somewhat distinct and complementary 
problem: how perceptually very different spatial patterns can be pro
gressively co-associated with the same “object category” by relying on 
the temporal proximity of these patterns in time. While the trace rule 
focuses on building hierarchical representational structures of abstract 
categories, our study focuses on how relevant spatial statistical structure 
can be learned even at the lowest level of representation, based on 
multiple types of structural information.

Studies on amodal completion have investigated visual perception 
under partial occlusion (Kanizsa, 1985; van Lier & Gerbino, 2015). 
Other studies have investigated the top-down influences of prior object 
knowledge (Hazenberg, Jongsma, Koning, & van Lier, 2014; Hazenberg 
& van Lier, 2016; Yun, Hazenberg, & van Lier, 2018). These studies are 
complementary to the current work in that they focus on partial pre
sentations or occlusions during perception or inference, whereas we 
investigate these effects during learning. The crucial link between these 
studies and ours is their reliance on the unconscious inference mecha
nism to explain results and demonstrate how inference and learning are 
strongly intertwined at the computational level (Fiser, Berkes, Orbán, & 
Lengyel, 2010).

Another related line of research, labeled aperture viewing (Morgan, 
Findlay, & Watt, 1981) and minimal videos (Ben-Yosef, Kreiman, & Ull
man, 2020) focuses on the minimal spatial and temporal information 
necessary to recognize objects. Similar to our work, both studies 
consider the integration of spatial and temporal information, with one 
crucial difference. These studies demonstrate how, in a rich spatio- 
temporal input space, the two types of information can be used inter
changeably to achieve recognition. In contrast, we use a controlled sit
uation to show the limits of how much one type of information is 
sufficient to create a representation of the other. Another study in the 
related area of spatial navigation reported that perceived spatiot- 
emporal continuity helps with spatial long-term memory, independent 
of explicit memory performance (Liverence & Scholl, 2015). These re
sults align with our findings, showing that removing overt cues to spatio- 
temporal coherence (i.e., movement animation) hinders the implicit 
formation of memories of spatial patterns.

In sum, our study differs from earlier reports in two general ways. 
First, it provides a more comprehensive and controlled examination of 
the possible interactions between spatial and temporal sensory struc
tures and internally generated biases. Second, it aims to establish gen
eral constraints and gain insights into the computational frameworks 
that can explain the emerging behavioral patterns in statistical learning.

7.3. Potential extensions

Our experimental design was deliberately kept simple: spatially fixed 
shape-pair structures, a single global motion pattern for temporal sta
tistics, and one occlusion structure. This minimal setup was sufficient to 
address the study’s questions and demonstrated that, even under such 
simplified conditions, complex interplays between statistical input and 
learning can emerge. While we highlighted the interactions between 
various effects shaping statistical learning, we did not provide a direct 
explanation for one of the intricate patterns emerging in Experiments 
2a–c—namely, that the performance rankings for different pair types did 
not align with the strength of traditional conditional probabilities in 
spatial statistics. Specifically, we found that diagonal pairs were learned 
best, suggesting that temporal transitional probabilities to neighboring 
(but not identical) cells may have exerted a stronger influence during the 
unconscious inference process.

Although further investigation of this effect was beyond the scope of 
the current study, future research is needed to clarify which of several 
potential underlying mechanisms is at play. First, the implicit integra
tion of spatial information across time in our experiment may be 
strongest not at the exact same spatial location, but equally strong at 
neighboring locations. This effect could be driven by afterimages 
resulting in masking and/or by an extension of the mechanism that 

supports conventional spatial VSL over time. In this case, participants 
may have associated the content of a grid cell not only with the content 
of neighboring cells at the same moment, but also with previously seen 
content stored in working memory. Second, the effect could be influ
enced by the relative uniqueness of the diagonal pairs compared to other 
types. While there are two structurally identical parallel and two 
orthogonal pairs (i.e., pairs of two shapes next to each other horizontally 
or vertically), the two diagonal pairs are more distinct -one arranged 
high-left to low-right, the other low-left to high-right. As shown in recent 
work, such structural features can influence VSL through potential 
interference (Garber & Fiser, 2024).

The two properties jointly inducing the learning biases in the current 
experiments -perceived movement direction and the perceived 
arrangement of shapes- are likely just two examples from a larger set of 
factors that can influence statistical learning. One such factor is the 
modality in which learning occurs. An intriguing question is whether the 
same paradigm, implemented in both the visual and auditory modalities, 
would yield similar specific results beyond any overall differences in 
learning efficiency. Recent evidence suggests that, in the case of simple 
temporal chunking of a long sound or visual scene sequence, human 
observers exhibit similar biases in both audition and vision (Garami & 
Fiser, 2024). If similar homology is found in learning structural infor
mation across the two modalities, it would provide strong support for 
the domain-generality of statistical learning (Frost, Armstrong, Siegel
man, & Christiansen, 2015). The controlled setup of the present exper
imental design offers a natural testbed to explore this issue.

There are two important extensions of the basic design that should be 
addressed by future research to better link statistical learning to human 
representational learning in its full complexity. The first extension re
lates to research under the titles of transfer learning and curriculum 
learning. Studies in these domains investigate how further abstractions 
of biases -such as global motion and occlusion in our paradigm- can 
emerge during the training phase and influence the future learning of 
representational hierarchies (Dekker, Otto, & Summerfield, 2022; 
Whittington et al., 2020). These abstract biases -for example, attributing 
motion to a visual region without observed motion in that area, or 
expecting the appearance of a particular shape from behind an occluder- 
can emerge only after lower-level structures have been learned and 
therefore do not belong to the original explicit feature space. A recent 
study using a new sVSL paradigm showed evidence of such transfer 
learning in a VSL context (Garber & Fiser, 2024). This paradigm can be 
naturally combined with the design of the present study to investigate 
the emergence of higher-level biases during transfer learning in a spatio- 
temporal context.

The second direction is “active learning,” which can be explored 
within the current paradigm by giving participants control over the di
rection of movement. In this setup, the nature and dynamics of partic
ipants’ exploratory behavior -and its interaction with already acquired 
knowledge- could be examined, similar to a recent gaze-contingent 
approach (Arató et al., 2024), using novel measures of VSL such as 
predicting upcoming stimuli based on currently presented partial pairs. 
Furthermore, our spatio-temporal VSL paradigm enables the exploration 
of neural correlates through methods such as neural frequency tagging, 
which could be extended from its current application in purely temporal 
statistical learning (Batterink & Paller, 2017; Moser et al., 2021) to the 
learning of spatially defined structures.

The extensions described above outline a progression from tradi
tional VSL methods, which investigate the basic steps of implicit 
learning, to paradigms better suited to examining more directly how 
implicit learning in humans can support the more intricate integration of 
spatial and temporal statistics with knowledge-based concepts. The ul
timate result of such integration is the emergence of a complex, abstract 
structural description, or “world model” (Bramley, Zhao, Quillien, & 
Lucas, 2023). Accordingly, the relevant research questions in these 
paradigms will shift from those asked in the present study to questions 
about the nature of such abstract representations of our complex, 
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continuously changing dynamic environment -for example, the nature of 
“object representation.” Our stVSL paradigm and the results presented in 
this study thus provide a first small step toward a fuller understanding of 
how humans learn a comprehensive and coherent, yet parsimonious, 
representation of the world.
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