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In this issue of Neuron, M1ynarski et al. (2021) provide a maxent-based normative method for flexible neural
data analysis by combining data-driven and theory-driven approaches. The next challenge is identifying the
right frameworks to use this method at its best.

The art of interpreting any empirical data

to gain a better insight about the underly-

ing phenomenon has always been a

balancing act between the Scylla of

considering only the acquired information

and the Charybdis of also using theoreti-

cally justified presumption about the pro-

cesses that might have generated the

data (Hastie et al., 2009). This dilemma is

especially pertinent in investigating com-

plex problems typical in biological and

cognitive systems (Fiser et al., 2010).

Bayesian data analysis has been

accepted as the normative optimal

method of maintaining this balance in the

limit of a correctly definedmodel and infin-

ite computational resources (Gelman

et al., 2013). However, a major criticism

of Bayesian methods is that the assump-

tions of the experimenter about the pa-

rameters and the correct model of the

observed system are subjective (Bowers

and Davis, 2012). This criticism motivated

a prominent line of research on how to

designpriors that contain the least amount

of presumptions about the estimated pa-

rameters (e.g., maxent priors) (Kass and

Wasserman, 1996). Unfortunately, this

approach reduces the unquestionable

benefits of using pre-existing knowledge

and assumptions about the parameters

that are appropriate or could be essential

for successfully exploring the data and

the phenomenon behind it.

In this issue of Neuron, M1ynarski et al.
(2021) propose an approach to this

conundrum and develop the correspond-

ing technique, which rather than choosing

between data-driven and initial-assump-

tion-based approaches combines the

benefits of the two. M1ynarski and his

colleagues start with the assumption

that neural systems are highly optimized

for particular tasks; thus, their internal

model’s parameters must be around an

optimum. Therefore, instead of avoiding

commitments about the model parame-

ters, M1ynarski et al. (2021) incorporate

in their method very strong and norma-

tively justified priors that reflect the pre-

sumed utility function of the underlying

system. However, to accommodate

chances that either the experimenter’s

model or the assumed utility might not

perfectly capture reality, the authors intro-

duce the idea that their chosen priors are

not used per se as a determinant of a fixed

set of parameters that reflect a pre-spec-

ified model. Instead, M1ynarski et al.

(2021) construct an optimization loop, in

which they search probabilistically for

the optimal interpretation based on a

weighted combination of both data and

the ‘‘appropriate’’ priors (Figure 1A). To

achieve this weighting, they define a fam-

ily of ‘‘optimization priors,’’ priors that are

not randomly defined over the parameter

space but rather constrained to various

degrees by the specific utility function

that the system is assumed to be effec-

tively optimized for. Among these priors,

there is an extreme distribution that puts

all the probability mass on the single

parameter set that maximizes the ex-

pected utility of the model system and,

correspondingly, restricts the parameter

posterior to this single set (Figure 1B).

This optimal parameter set is used as an

anchor point for the remaining members

of the family, which are defined around

the anchor point by using the maximum

entropy principle and various levels of

preset average utility controlled by an

‘‘optimization parameter,’’ a single scalar

b. When b = 0, the relevance of parame-

ters is uniformly distributed without any

prior bias, but as b/N, the parameters’

distribution is gradually more biased to-

ward the values defined by the anchor

point and, hence, toward the model that

is optimized for the presumed utility

function.

Thus, this technique can build a contin-

uous abstract trajectory in the model’s

parameter space with a ‘‘knob,’’ a tunable

parameter b that allows traveling along

the trajectory between the best parame-

ters reflecting only the available data and

the best parameters of the selected

model that could achieve the highest util-

ity value with the given task (Figure 1B).

This is an elegant solution to bridge

data-driven and theory-driven ap-

proaches while considering various ‘‘in-

termediate’’ model settings between the

two extremes in a principled manner. Be-

ing normative, the framework allows the

use of the full repertoire of Bayesian com-

putations for conducting inquiries rele-

vant in the particular investigation.

M1ynarski et al. (2021) demonstrate this

by considering four such inquiries on

three different datasets: (1) performing a

statistical test for optimality of a system

based on given data and a presumed util-

ity function, (2) inferring the system’s de-

gree of optimality, (3) disambiguating

among various mappings between theo-

retical predictions and the parameters of

the utility function, and (4) improving the

inference in high-dimensional problems

due to the structure of the optimization

priors.

While the method of M1ynarski et al.

(2021) has the potential to help with

analyzing complex data, it is worth putting
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this framework into context by clarifying

what it can provide as is andwhat aspects

of the challenge still require additional

development. Because of the structured

nature of the optimization priors, the

method can effectively and normatively

exclude a huge fraction of the potential

parameter space that would give rise to

inadequate systems (models with specific

parameters), and it can do this regardless

of how well the particular systems are

optimized for the given utility function.

This is an important technical feat that

opens the road to tackling a more com-

plex class of data-analysis problems

successfully based on limited amounts

of data.

However, this technical tool relies

heavily on the particular assumptions

of the experimenter about both the right

model of the investigated real system

and the true utility the system aims to

maximize (Figure 1A). As M1ynarski
et al. (2021) also point out in their dis-

cussion, the method does not help

explicitly to tackle the two fundamental

challenges of the analysis: identifying a

proper utility function and defining a

proper model (as opposed to just pa-

rameters) under which the system is

close to optimal. M1ynarski et al. offer

an implicit way of using their methods

for the first challenge (selecting the

most appropriate utility function under

which the model is the closest to

being optimal) in simple cases using

two standard Bayesian approaches:

model selection for arbitrarily picked

utility functions (e.g., sparseness versus

slow feature change) and hierarchical

parameter estimation for the continuous

case.

While M1ynarski et al. (2021) do not

consider the second challenge, their

probabilistic method can be applied in

the complementary setup by systemati-

cally tuning the model structure to find

the one that is the closest to be optimal

given a particular utility function. In this

alternative setup, optimality of two

competing models could be investigated

by model selection the same way as the

optimality of the sparseness versus slow

feature utility function was in the original

setup. However, this extension highlights

the method’s limitation in feasibility for

addressing the two fundamental chal-

lenges in realistic contexts: both the

model system and the assumed utility

function should be simple enough to

make the model comparison or hierarchi-

cal parameter estimation tractable. While

this limitation can be concealed in the

case of finding the proper utility function

by testing arbitrarily defined simple utility

functions (such as sparseness), the

complexity issue cannot be sidestepped

so easily in the alternative case of search-

ing for better models.

Here, we propose a systematic

approach incorporating the method of

M1ynarski et al. (2021) to tackle rather

than to avoid this problem of complexity

in the case of searching for better models

within the realm of probabilistic percep-

tual models. By relying on the utility

function, an approximate probabilistic

(Bayesian) inference can be performed

so that it leads to the improvement of

the expected utility of a resource-con-

strained system (Cobb et al., 2018). This

is the idea behind loss-calibrated infer-

ence (LCI) (Figure 1C) (Lacoste-Julien

et al., 2011). Testing whether processes

in the brain follow LCI is not only important

for finding the right models, but it is also

a prime example of an investigation

where the complexity of inferring the

approximative models renders the simple

Figure 1. Optimization-prior-based parameter estimation and its integration with the idea of
loss calibration
(A) The experimenter makes assumptions (orange frame) about the utility function, which determines the
desired parametric state of the system, and about the structure of the real system that generates the
experimenter’s observations (neural data, blue rectangle). Optimization priors (red arrow) gradually
introduce the experimenter’s normative assumption that the system operates close to its optimum based
on the assumed utility function.
(B) Applying the optimization priors effectively reduces the space of plausible model parameters during
parameter inference. The optimality parameter, b, regulates the strength of optimization. Greater b values
result in more concentrated posterior distributions (narrowing funnel) around higher utility parameter sets.
Maximum a posteriori solutions for different b values (curved arrow) connects the normative optimum (b =
N) with the maximum likelihood solution (b = 0).
(C) Our proposal of applying the optimization-prior method for testing the hypothesis of loss calibration
(LC, green arrow). The costly computations with the approximate system (true system, gray rectangle) are
replaced by simpler computations (yellow arrow), assuming that the system can perform exact Bayesian
computations (model system, orange rectangle).
(D) LC designates a region in the approximate system’s parameter space where the utility of the system is
higher than the utility at the exact system’s normative optimum (green funnel). Different points in this LC
region correspond to different levels of optimization, including the two extremes where the system is not
calibrated at all and where the system is optimally calibrated. This region can be mapped onto the
parameter space of the exact system (orange cloud), potentially creating an overlap (yellow hatched re-
gion) with the optimization-prior-constrained region (red-blue funnel), providing evidence for LC in the
approximate system. The presence of the overlap can be verified by evaluating the approximate model’s
utility along the optimization-prior-constrained region (red-blue funnel).
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model selection techniques of M1ynarski
et al. (2021) unfeasible.

The extension we propose is loosely

based on the idea of jumping between

the true and the ‘‘proposal distribution’’

in sampling, where a more easily comput-

able but different distribution is used for

avoiding the expensive calculations with

the true distribution. In our case, this

amounts to inferring the parameters of

the exact model with the method of

M1ynarski et al. (2021), which is cheaper

than inferring the same parameters of

the approximate model. The requirement

in sampling that the proposal and the

true distributions have to be proportional

is equivalent in our case with the exact

system and its approximate variants

(sharing the same parameters) being

similar. Using this setup, a comparison

between the expected utilities of the

approximate versions derived from the

optimal exact model and from a model

based on the authors’ method can pro-

vide evidence for LCI. A higher expected

utility at the latter would reflect a well-cali-

brated approximation on the real system,

while a higher value at the optimal exact

model would suggest that parameters

identified by the method of M1ynarski
et al. (2021) represent just a generic devi-

ation from the optimal anchor point.

The treatment of the above LCI problem

is one example of how to capitalize on the

appealing features of the new method of

M1ynarski et al. (2021) when analyzing

real-world problems. The ultimate signifi-

cance and impact of their framework

hinges crucially on the success in inte-

grating it with similar theory-driven ana-

lyses in the future.
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