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In this issue of Neuron, Mtynarski et al. (2021) provide a maxent-based normative method for flexible neural
data analysis by combining data-driven and theory-driven approaches. The next challenge is identifying the
right frameworks to use this method at its best.

The art of interpreting any empirical data
to gain a better insight about the underly-
ing phenomenon has always been a
balancing act between the Scylla of
considering only the acquired information
and the Charybdis of also using theoreti-
cally justified presumption about the pro-
cesses that might have generated the
data (Hastie et al., 2009). This dilemma is
especially pertinent in investigating com-
plex problems typical in biological and
cognitive systems (Fiser et al., 2010).
Bayesian data analysis has been
accepted as the normative optimal
method of maintaining this balance in the
limit of a correctly defined model and infin-
ite computational resources (Gelman
et al., 2013). However, a major criticism
of Bayesian methods is that the assump-
tions of the experimenter about the pa-
rameters and the correct model of the
observed system are subjective (Bowers
and Davis, 2012). This criticism motivated
a prominent line of research on how to
design priors that contain the least amount
of presumptions about the estimated pa-
rameters (e.g., maxent priors) (Kass and
Wasserman, 1996). Unfortunately, this
approach reduces the unquestionable
benefits of using pre-existing knowledge
and assumptions about the parameters
that are appropriate or could be essential
for successfully exploring the data and
the phenomenon behind it.

In this issue of Neuron, Mtynarski et al.
(2021) propose an approach to this
conundrum and develop the correspond-
ing technique, which rather than choosing
between data-driven and initial-assump-
tion-based approaches combines the
benefits of the two. Miynarski and his
colleagues start with the assumption
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that neural systems are highly optimized
for particular tasks; thus, their internal
model’s parameters must be around an
optimum. Therefore, instead of avoiding
commitments about the model parame-
ters, Miynarski et al. (2021) incorporate
in their method very strong and norma-
tively justified priors that reflect the pre-
sumed utility function of the underlying
system. However, to accommodate
chances that either the experimenter’s
model or the assumed utility might not
perfectly capture reality, the authors intro-
duce the idea that their chosen priors are
not used per se as a determinant of a fixed
set of parameters that reflect a pre-spec-
ified model. Instead, Mtynarski et al.
(2021) construct an optimization loop, in
which they search probabilistically for
the optimal interpretation based on a
weighted combination of both data and
the “appropriate” priors (Figure 1A). To
achieve this weighting, they define a fam-
ily of “optimization priors,” priors that are
not randomly defined over the parameter
space but rather constrained to various
degrees by the specific utility function
that the system is assumed to be effec-
tively optimized for. Among these priors,
there is an extreme distribution that puts
all the probability mass on the single
parameter set that maximizes the ex-
pected utility of the model system and,
correspondingly, restricts the parameter
posterior to this single set (Figure 1B).
This optimal parameter set is used as an
anchor point for the remaining members
of the family, which are defined around
the anchor point by using the maximum
entropy principle and various levels of
preset average utility controlled by an
“optimization parameter,” a single scalar
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B. When B = 0, the relevance of parame-
ters is uniformly distributed without any
prior bias, but as § — «, the parameters’
distribution is gradually more biased to-
ward the values defined by the anchor
point and, hence, toward the model that
is optimized for the presumed utility
function.

Thus, this technique can build a contin-
uous abstract trajectory in the model’s
parameter space with a “knob,” a tunable
parameter B that allows traveling along
the trajectory between the best parame-
ters reflecting only the available data and
the best parameters of the selected
model that could achieve the highest util-
ity value with the given task (Figure 1B).
This is an elegant solution to bridge
data-driven and theory-driven ap-
proaches while considering various “in-
termediate” model settings between the
two extremes in a principled manner. Be-
ing normative, the framework allows the
use of the full repertoire of Bayesian com-
putations for conducting inquiries rele-
vant in the particular investigation.
Mtynarski et al. (2021) demonstrate this
by considering four such inquiries on
three different datasets: (1) performing a
statistical test for optimality of a system
based on given data and a presumed util-
ity function, (2) inferring the system’s de-
gree of optimality, (3) disambiguating
among various mappings between theo-
retical predictions and the parameters of
the utility function, and (4) improving the
inference in high-dimensional problems
due to the structure of the optimization
priors.

While the method of Mtynarski et al.
(2021) has the potential to help with
analyzing complex data, it is worth putting
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Figure 1. Optimization-prior-based parameter estimation and its integration with the idea of
loss calibration

(A) The experimenter makes assumptions (orange frame) about the utility function, which determines the
desired parametric state of the system, and about the structure of the real system that generates the
experimenter’s observations (neural data, blue rectangle). Optimization priors (red arrow) gradually
introduce the experimenter’s normative assumption that the system operates close to its optimum based
on the assumed utility function.

(B) Applying the optimization priors effectively reduces the space of plausible model parameters during
parameter inference. The optimality parameter, B, regulates the strength of optimization. Greater  values
result in more concentrated posterior distributions (narrowing funnel) around higher utility parameter sets.
Maximum a posteriori solutions for different  values (curved arrow) connects the normative optimum (8 =
o) with the maximum likelihood solution (8 = 0).

(C) Our proposal of applying the optimization-prior method for testing the hypothesis of loss calibration
(LC, green arrow). The costly computations with the approximate system (true system, gray rectangle) are
replaced by simpler computations (yellow arrow), assuming that the system can perform exact Bayesian
computations (model system, orange rectangle).

(D) LC designates a region in the approximate system’s parameter space where the utility of the system is
higher than the utility at the exact system’s normative optimum (green funnel). Different points in this LC
region correspond to different levels of optimization, including the two extremes where the system is not
calibrated at all and where the system is optimally calibrated. This region can be mapped onto the
parameter space of the exact system (orange cloud), potentially creating an overlap (yellow hatched re-
gion) with the optimization-prior-constrained region (red-blue funnel), providing evidence for LC in the
approximate system. The presence of the overlap can be verified by evaluating the approximate model’s
utility along the optimization-prior-constrained region (red-blue funnel).

this framework into context by clarifying
what it can provide as is and what aspects
of the challenge still require additional
development. Because of the structured
nature of the optimization priors, the
method can effectively and normatively
exclude a huge fraction of the potential
parameter space that would give rise to
inadequate systems (models with specific
parameters), and it can do this regardless
of how well the particular systems are
optimized for the given utility function.
This is an important technical feat that
opens the road to tackling a more com-
plex class of data-analysis problems
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successfully based on limited amounts
of data.

However, this technical tool relies
heavily on the particular assumptions
of the experimenter about both the right
model of the investigated real system
and the true utility the system aims to
maximize (Figure 1A). As Mtynarski
et al. (2021) also point out in their dis-
cussion, the method does not help
explicitly to tackle the two fundamental
challenges of the analysis: identifying a
proper utility function and defining a
proper model (as opposed to just pa-
rameters) under which the system is
close to optimal. Mtynarski et al. offer
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an implicit way of using their methods
for the first challenge (selecting the
most appropriate utility function under
which the model is the closest to
being optimal) in simple cases using
two standard Bayesian approaches:
model selection for arbitrarily picked
utility functions (e.g., sparseness versus
slow feature change) and hierarchical
parameter estimation for the continuous
case.

While Mtynarski et al. (2021) do not
consider the second challenge, their
probabilistic method can be applied in
the complementary setup by systemati-
cally tuning the model structure to find
the one that is the closest to be optimal
given a particular utility function. In this
alternative setup, optimality of two
competing models could be investigated
by model selection the same way as the
optimality of the sparseness versus slow
feature utility function was in the original
setup. However, this extension highlights
the method’s limitation in feasibility for
addressing the two fundamental chal-
lenges in realistic contexts: both the
model system and the assumed utility
function should be simple enough to
make the model comparison or hierarchi-
cal parameter estimation tractable. While
this limitation can be concealed in the
case of finding the proper utility function
by testing arbitrarily defined simple utility
functions (such as sparseness), the
complexity issue cannot be sidestepped
so easily in the alternative case of search-
ing for better models.

Here, we propose a systematic
approach incorporating the method of
Mtynarski et al. (2021) to tackle rather
than to avoid this problem of complexity
in the case of searching for better models
within the realm of probabilistic percep-
tual models. By relying on the utility
function, an approximate probabilistic
(Bayesian) inference can be performed
so that it leads to the improvement of
the expected utility of a resource-con-
strained system (Cobb et al., 2018). This
is the idea behind loss-calibrated infer-
ence (LCIl) (Figure 1C) (Lacoste-Julien
et al., 2011). Testing whether processes
in the brain follow LCl is not only important
for finding the right models, but it is also
a prime example of an investigation
where the complexity of inferring the
approximative models renders the simple
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model selection techniques of Mtynarski
et al. (2021) unfeasible.

The extension we propose is loosely
based on the idea of jumping between
the true and the “proposal distribution”
in sampling, where a more easily comput-
able but different distribution is used for
avoiding the expensive calculations with
the true distribution. In our case, this
amounts to inferring the parameters of
the exact model with the method of
Mtynarski et al. (2021), which is cheaper
than inferring the same parameters of
the approximate model. The requirement
in sampling that the proposal and the
true distributions have to be proportional
is equivalent in our case with the exact
system and its approximate variants
(sharing the same parameters) being
similar. Using this setup, a comparison
between the expected utilities of the
approximate versions derived from the
optimal exact model and from a model
based on the authors’ method can pro-

vide evidence for LCI. A higher expected
utility at the latter would reflect a well-cali-
brated approximation on the real system,
while a higher value at the optimal exact
model would suggest that parameters
identified by the method of Mtynarski
et al. (2021) represent just a generic devi-
ation from the optimal anchor point.

The treatment of the above LCI problem
is one example of how to capitalize on the
appealing features of the new method of
Mtynarski et al. (2021) when analyzing
real-world problems. The ultimate signifi-
cance and impact of their framework
hinges crucially on the success in inte-
grating it with similar theory-driven ana-
lyses in the future.
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