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SUMMARY

We address two main challenges facing systems
neuroscience today: understanding the nature and
function of cortical feedback between sensory areas
and of correlated variability. Starting from the old
idea of perception as probabilistic inference, we
show how to use knowledge of the psychophysical
task to make testable predictions for the influence
of feedback signals on early sensory representa-
tions. Applying our framework to a two-alternative
forced choice task paradigm,we can explainmultiple
empirical findings that have been hard to account
for by the traditional feedforward model of sensory
processing, including the task dependence of neu-
ral response correlations and the diverging time
courses of choice probabilities and psychophysical
kernels. Our model makes new predictions and
characterizes a component of correlated variability
that represents task-related information rather
than performance-degrading noise. It demonstrates
a normative way to integrate sensory and cognitive
components into physiologically testable models of
perceptual decision-making.

INTRODUCTION

Almost 150 years ago, Helmholtz proposed that visual percep-

tion is an inference process (Helmholtz, 1867). He suggested

that at any point in time the brain combines its prior knowledge

about the external world with the incoming sensory information

to compute the best explanation for its inputs. Substantial evi-

dence from both psychophysics (Kersten et al., 2004) and recent

physiological findings (Berkes et al., 2011) suggests that the re-

sponses of visual neurons are influenced by such prior informa-

tion, also called an internal model. Since sensory information is

usually uncertain and often incomplete, this proposed inference

and the assumed internal model both need to be probabilistic in

nature (Fiser et al., 2010; Pouget et al., 2013). Furthermore, it has

been noted that probabilistic inference in a hierarchical model re-

quires a flow of information remarkably similar to the one within

the visual system: feedforward from the retina and feedforward,
recurrent, and feedback within the cortex (Mumford, 1992;

Lee and Mumford, 2003). However, the major challenge to

generating neurophysiologically testable predictions based on

probabilistic inference, and for incorporating feedback in this

framework, has been that the nature of the internal model that

the brain uses for general vision is currently unknown.

We overcame this challenge by studying the consequences of

probabilistic inference in a well-controlled task in which the

generative model of the sensory inputs is under the control of

the experimenter. For the subject to perform probabilistic infer-

ence in such a task, the subject’s brain needs to learn this exper-

imenter-defined generative model. Learning such a model can

be interpreted as a perturbation on the unknown internal model

for general vision. We can therefore use our knowledge of this

experimenter-defined perturbation to make predictions about

how the neural responses should change as a result of it. We

applied these ideas to the well-studied two-alternative forced

choice (2AFC) task paradigm and, assuming that the brain per-

forms inference by neural sampling (Hoyer and Hyvärinen,

2003; Fiser et al., 2010), we generated predictions for both the

responses of sensory neurons and for psychophysical measure-

ments. We found that our probabilistic inference model correctly

reproduces key experimental observations in 2AFC tasks: the

task dependency of noise correlations (Cohen and Newsome,

2008), the temporal increase of the correlation between sensory

responses and behavior (called choice probability [CP]; Cohen

and Newsome, 2009; Nienborg and Cumming, 2009; Nienborg

et al., 2012), and the decrease in the correlation between stim-

ulus and behavior (called psychophysical kernel [PK]; Neri

et al., 1999; Ahumada, 2002) in some tasks (Nienborg and Cum-

ming, 2009), but not others (Brunton et al., 2013) (Figure 1).

We also derived a number of specific predictions based on our

model that can be readily tested in empirical studies. First, we

predict that the noise correlations for sensory responses in a

2AFC task have two maxima and two minima whose locations

are defined by the task-relevant stimuli. We further predict an in-

crease in the amplitude as defined by those maxima and minima

on the timescale of perceptual learning. Psychophysically, we

predict that the relative weighting of evidence throughout the trial

should depend on stimulus strength. Since our model reflects

the structure of the task and was not designed to fit any of the

existing observations made in specific experiments, we predict

that our findings generalize to other stimuli, modalities, and sen-

sory areas in the brain. In general, the fact that our framework’s

predictions directly reflect the spatial and temporal structure of
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Figure 1. Schematic of the Perceptual Decision-Making System

Modeled in This Paper

Information about a visual stimulus is represented by the responses ri of a

population of sensory neurons whose activity influences the behavioral choice

of the subject. This paper focuses on the following three observables in this

system: (1) the structure of the correlations between neural responses (noise

correlation) believed to be important for the amount of information that can be

represented by neural responses (Zohary et al., 1994; Abbott and Dayan, 1999;

Ecker et al., 2011); (2) the time course of the magnitude of the choice-triggered

stimulus average, also called psychophysical kernel (PK), which quantifies the

influence of the stimulus on the final decision as a function of the time when the

stimulus is presented during the trial (Neri et al., 1999; Ahumada, 2002;

Nienborg and Cumming, 2009; Brunton et al., 2013); and (3) the correlation

between a single neuron’s response and the final choice, usually quantified as

choice probability (CP; Britten et al., 1996; Nienborg et al., 2012; Haefner et al.,

2013).
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the experimenter-defined task makes them easy to test. Impor-

tantly, since its predictions concern the full statistical structure of

neural responses, including higher-level correlations, our frame-

work provides theory-driven guidance on how to analyze the

high-dimensional data obtained from increasingly common pop-

ulation-recording techniques.

RESULTS

A basic assumption in our framework is that sensory neurons in

the cortex represent the brain’s belief about some aspect of the

outside world (Lee and Mumford, 2003). In the case of primary

visual cortex (V1), we assumed this to be how well a Gabor-

shaped feature describes the image on the retina at the location

of the neuron’s receptive field (Olshausen and Field, 1997). From

that follows that the activity of V1 neurons will depend both on

the image on the retina and on any prior knowledge about the

outside world in the rest of the brain. The former, called likelihood

in probabilistic inference, is communicated to V1 via feedforward

connections, while the latter, the prior, arrives via feedback con-

nections. Training a subject on a given psychophysical task

induces such prior knowledge in the subject’s brain about the

stimulus that is being presented. In this paper, we show how

to use knowledge about the task structure to make predictions

about its influence on V1 responses.

Qualitative Intuitions
Let’s assume a simple coarse orientation discrimination task

where the subject has to report whether either a vertical or a hor-

izontal grating is embedded in a noisy image. Then, on any given

trial, if the subject believes the vertical grating to be present,

neurons representing vertical orientations will be more active

than baseline, and neurons representing horizontal orientations
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will be less active, even if there is no signal in the stimulus at

all. This means that those neurons will be correlated with the

choice (commonly quantified as CPs, Figure 6B). Furthermore,

as a side effect of this correlation between neural response

and perceptual decision, the correlations between the re-

sponses of neurons supporting the same choice will be higher

than between the responses of neurons supporting opposing

choices (Figure 4). Finally, since the internal belief about the

correct choice develops gradually by integrating the sensory in-

formation over the course of a trial, the magnitude of those cor-

relations also should increase over the course of a trial (Figure 6).

As a side effect, the dynamic feedback about the current belief

about the correct choice on the sensory responses may, in the

case of weak external inputs, lead to a self-reinforcing loop

with the result that early evidence has a bigger influence on the

final decision than late evidence (Figure 7).

The Model
To make the above intuitions quantitative, we proceed in three

steps. First, we need to make an assumption about the genera-

tive model that the brain has learned and in which it performs

inference. Second, we need to make an assumption about

how the variables in this model are related to sensory neurons.

Third, we need to specify how the brain’s beliefs are related to

the responses of those neurons.

The generative model of a psychophysical task consists of the

relationship between the available behavioral choices and the

stimulus, as well as the prior probabilities of each choice being

the correct one. In 2AFC tasks, the behaviorally relevant variable

is binary and related to one of two possible choices. In visual

tasks, the sensory input is the luminance pattern on the retina.

For concreteness, we present our results in the context of an

orientation discrimination task (Figure 2A). However, our results

are also applicable to 2AFC tasks based on other stimuli (e.g.,

motion and disparity) or modalities (e.g., auditory and vestibular).

We compared our model predictions with empirical data from a

coarse motion direction discrimination task (Cohen and News-

ome, 2008, 2009), a coarse disparity discrimination task (Nien-

borg and Cumming, 2009), and an auditory task (Brunton et al.,

2013).

First, the correct decision, D, is drawn from a prior distribution

(here we assumed pðD= 1Þ=pðD= 2Þ= 0:5; Figure 2B). D deter-

mines which one of two target images (here grating images)

will be embedded in Gaussian noise. We represent the presence

or absence of each target by g1 and g2 being 0 or 1, respec-

tively. Probabilistic inference in this task entails computing the

probability distribution over the relevant unobserved variables

(here D), given the observed ones (here the image I ) pðD j IÞ.
While the experimenters control the image I, they learn about

the subject’s belief about D in any one trial by recording the sub-

ject’s choice.

The subject achieves optimal performance if the internal

model that its brain has learned agrees with the actual (external)

model that generates the stimulus defined by the experimenter.

However, while the experimenter’s model defines the theoretical

optimum, the model learned by the brain is likely to deviate from

it (Ma, 2012). Here we model two such deviations. The first devi-

ation is due to the fact that the brain has to learn the task by



A B C Figure 2. The Structure of the Task

(A) The task is to decide whether a noisy display

was caused by a �45�- or +45�-oriented grating.

(B) Experimenter’s model. First the rewarded de-

cision D is chosen from some prior distribution,

pðDÞ. Depending on the value of D, 1 or 2, the

corresponding grating variable g1 or g2 is set to 1,

while the value of the other grating variable is set

to zero. The image I, consisting of N3N pixels on

the screen, is drawn from some noisy distribution

around the signal/target images, g1T1 +g2T2.

(C) Model learned by the brain. Due to the noise in

the stimulus, the correct decisions corresponding

to the two values ofDmay be caused not just by the gratings with exactly�45� or exactly +45� orientation but also, with smaller probability, by gratings of similar

orientation (indicated by arrows of different width). The relationships betweenD and the gi values are not deterministic but probabilistic and learned by the subject

by correlating the rewarded responses with the stimuli preceding them. Note that arrows here and in all following figures other than Figure 3 indicate statistical

dependencies in a Bayesian network, not information flow (which is shown in Figures 3B and 7C).
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correlating rewarded choices with preceding noisy stimuli (Qa-

mar et al., 2013). As a result, there will be some uncertainty about

the exact task-relevant orientations (Figure 2C). Furthermore,

while the relationships between D and gi are deterministic in

the experimenter’s model, such that pðg1 = 1 jD= 1Þ= 1 and

pðg2 = 1 jD= 1Þ= 0, for instance, allowing for other explanations

for the image on the retina will change that probability to inter-

mediate values between 0 and 1. Our assumptions about these

deviations manifest themselves as two free parameters in our

model (Experimental Procedures).

To make experimentally testable predictions for the neuronal

responses in V1, we combine the generative model of the task

with the probabilistic version of an established sparse-coding

model for V1 (Olshausen and Field, 1997; Hoyer and Hyvärinen,

2003). In this model, the responses of V1 simple cells, fxig, are
assumed to represent the intensity of an oriented Gabor-shaped

feature in the image at a particular location (Figure 3; Experi-

mental Procedures). The ideas underlying our approach are

that (1) the brain will perform the task based on the responses

of its existing V1 neurons; and (2) the relationship between retina

and V1 is not substantially altered by learning a task during adult-

hood, long after the critical period. As a result, each variable gi in

our task model now represents the task-relevant responses of

neurons in our V1 model fxig rather than a pixel pattern on the

screen directly (Figure 3; Experimental Procedures). If the brain

indeed solves the task by performing probabilistic inference

over all unobserved variables given the observed one ðIÞ, the
task structure (which defines the upper part of our model) acts

as a prior on the activity of the V1 neurons represented by x.

Hence, task-related knowledge, i.e., expectations about which

stimuli are more or less likely in the sensory inputs, is thereby

incorporated in the sensory neurons’ responses. This top-

down influence induces correlations between the V1 neurons

(noise correlations), between the neurons and the decision

(CPs), and between the stimulus and the decision (PK). Since

these three types of correlations are directly observable, we

use them to link our model predictions to empirical data.

Finally, we need to specify the algorithm by which the brain

performs inference in the generative model defined by Figure 3

and how its beliefs about the variables in this model are repre-

sented by neural responses. While both parametric (Ma et al.,

2006) and sampling-based implementations have been pro-
posed, we assumed a neural sampling-based representation

supported by many studies in cognition (both for inference, re-

viewed in Vul et al., 2014, and learning [Bonawitz et al., 2014])

and increasingly also sensory processing (Hoyer and Hyvarinen,

2003; Fiser et al., 2010; Berkes et al., 2011; Buesing et al., 2011;

Pecevski et al., 2011; also see Moreno-Bote et al., 2011 for an

approach combining both parametric and sampling-based rep-

resentations). In short, the neural sampling hypothesis proposes

that the brain performs inference, i.e., computes pðD;g; x j IÞ, by
generating a sequence of samples from this probability distribu-

tion based on the generative model that it has learned. In our

case, a single sample, indexed by k, from this probability distri-

bution pðD;g; x j IÞ is a vector ðDðkÞ;gðkÞ
1 ;g

ðkÞ
2 ; :::; x

ðkÞ
1 ; x

ðkÞ
2 ; :::Þ. In a

sampling-based representation, the marginal probability

pðD j IÞ can be deduced from the sequence of samples DðkÞ.
This means that a decision-making area, computing the proba-

bility that the display on the screen was caused by one orienta-

tion rather than the other one, can simply count the number of

occurrences of DðkÞ = 1 and DðkÞ = 2 over time, for instance, by

increasing or decreasing the activity of a pool of neurons, as

has been proposed previously (Gold and Shadlen, 2007).

The generative model (Experimental Procedures) specifies the

sampling equations (Supplemental Experimental Procedures)

that constitute a mechanistic model for how each V1 neuron in

our model updates its firing rate (represented by xi ), depending

on its inputs from the retina (feedforward), the other V1 neurons

(lateral), and the rest of the brain (feedback, specified by the task

model). In our simulations, we modeled a trial of 1-s duration by

generating 80 samples from the full model as described in Fig-

ure 3 (see Experimental Procedures). The 80 samples for a single

simulated V1 neuron represent both the neuron’s firing rate

changing throughout the trial and the brain’s evolving belief

about the intensity of the corresponding Gabor-shaped feature

in the image. The sum of all 80 samples for a particular xi repre-

sents the spike count over the duration of the entire trial used to

compute noise correlations for Figures 4 and 5. Individual sam-

ples are used to compute the instantaneous correlation between

a neuron’s response and the decision for Figure 6C.

Task-Induced Correlations between Sensory Neurons
Figure 4 shows the trial-to-trial correlation coefficients between

the sensory neurons in our model while the system is performing
Neuron 90, 1–12, May 4, 2016 3
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Figure 3. Full Probabilistic Model Consisting of a Sparse-Coding

Model for Early Vision and the Generative Model for the Task

(A) Graphical representation of the combined generative model is shown.

(B) Correspondence to biology. We assume x to be represented by early visual

neurons, for instance in V1. While our results do not depend on the details of

the implementation of grating and decision variables in the brain, we imagine

them being represented in mid- or high-level visual areas and decision-making

areas, respectively.
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inference on a stimulus without signal (no grating present),

commonly called noise correlations (Cohen and Kohn, 2011;

Nienborg et al., 2012). The most important feature to note are

the two maxima and the two minima in the correlation structure

occurring at the task-relevant orientations: 45� versus 135� (Fig-
ure 4A) and vertical versus horizontal (Figure 4B). The correlation

peaks are a direct result of the fact that neurons with stimulus

preferences close to the same task-relevant stimulus will be

increased and decreased together as the subject’s belief about

the correct choice varies from trial to trial. At the same time, neu-

rons that support different choiceswill have reduced correlations

since their responses are increased and decreased on different

trials. This deviation from rotational symmetry is task dependent

in that the locations of peaks and troughs are entirely determined

by the task-relevant orientations. Furthermore, our framework

can be used easily to predict the noise correlation structure for

other psychophysical tasks. For example, for a three-alternative

forced choice (3AFC) task, our framework predicts the noise cor-

relation structure to have three peaks along the diagonal and

three corresponding troughs on each side of the diagonal (Fig-

ure 5A). Similarly, a detection task is predicted to induce a single

peak at the task-relevant stimulus (Figure 5B).

A signature of this task dependence of the correlation struc-

ture has been observed previously in area MT in a coarse motion

direction task (Cohen and Newsome, 2008). To facilitate com-

parison with the data from that experiment, we collapsed

our correlation matrix and plotted the correlation coefficient

as a function of the difference in the preferred orientations of

the two neurons (Figure 4C). Following Cohen and Newsome

(2008), we plotted this dependency separately for neuron pairs
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where both neurons prefer the same task-relevant orientation

(red) and for neuron pairs supporting opposing choices (blue).

As in the empirical data (Figure 4D), we found a reduction in

correlations between neurons supporting different choices

compared to pairs of neurons supporting the same choice. Our

model prediction deviates from this dataset at the largest differ-

ences in orientation. However, it fully agrees with more recent

data (Bondy and Cumming, 2013) that does not find a crossover

in the correlation profiles at large differences between preferred

orientation. Future studies will be needed to understand this dif-

ference between datasets, since both 2AFC tasks—one in the

motion direction domain (Cohen and Newsome, 2008) and one

in the orientation domain (Bondy and Cumming, 2013)—are

identical from the perspective of our framework and, hence,

model.

The second feature to note in the correlation structure (Figures

4A and 4B) is the elongated shape of the peaks and troughs. This

is due to the task uncertainty included in our model. The more

precisely the task-relevant orientations are known by the sub-

ject, the closer to rotationally symmetric they are predicted to

be. This prediction is consistent with the observation that a sub-

stantial uncertainty is required in our model (parameter k; Exper-

imental Procedures) to find a reasonable agreement with the

data of Cohen and Newsome (2009), where the monkeys are

cued to the task-relevant directions on a trial-by-trial basis, while

there is very little sign of any elongated shape in their correlation

matrix and, hence, task uncertainty in the data of Bondy and

Cumming (2013), who train their monkeys for several days on

every new pair of task-relevant orientations before measuring

the correlation matrix.

Our model does not predict the absolute magnitude of the

correlation matrix and, hence, the overall level of correlations.

Any non-task-specific changes in the overall level of excitability

(e.g., due to changes in alertness; Ecker et al., 2014) would add a

positive offset to the correlations in Figures 4 and 5. However,

since the amplitude of the correlation matrix (measured as

peak minus trough) directly reflects the degree of task knowl-

edge, another new prediction of our framework is an increase

in the amplitudewith learning (Figure 8). As the brain learns a bet-

ter approximation of the experimenter’s task, its prior becomes

stronger and the top-down influence increases in our model, a

process that may be related to perceptual learning (Goldstone,

1998).

Correlations between Sensory Responses and Behavior
Another much-studied empirical quantity in the context of

perceptual decision-making is CP (Britten et al., 1996; Shadlen

et al., 1996; Haefner et al., 2013; Nienborg et al., 2012), essen-

tially a measure for the correlation between the variability in the

response of a sensory neuron and the behavioral choice in

each trial (Experimental Procedures). Our model makes three

predictions in agreement with existing empirical data. First, it

predicts CPs to grow as a function of time (Figure 6C, compare

with data redrawn in Figure 6D). Whether CPs reflect the causal

influence of a sensory neuron on the decision or whether they

reflect information received by the neuron about the decision

formed in higher cortical areas has been a matter of debate

(Shadlen et al., 1996; Nienborg and Cumming, 2009, 2010). In
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Figure 4. Model Predictions for Noise Corre-

lations between the Sensory Neurons in Our

Model

(A) Full correlationmatrix with neurons sorted by their

preferred orientation. The task-relevant orientations

are indicated at 45� and 135�. Only the qualitative

shape is predicted by our model; the overall magni-

tude depends on the particular choice of model

parameters (and can be fit to data).

(B) Same as (A) is shown, but for a cardinal orienta-

tions task.

(C) Correlation coefficients as a function of difference

in preferred orientation between the two neurons in a

pair. Red represents all pairs where each neuron’s

preferred orientation is closest to the same task-

relevant orientation (i.e., supports the same choice).

Blue represents all pairs in which the two neurons are

aligned with different choices. The variability around

the means reflects the measurement noise from

1,000 simulated trials.

(D) Noise correlations recorded between neurons in

area MT for a motion direction task (Cohen and

Newsome, 2008; data are replotted from Figure 4

therein). Since motion direction has a period of 360�

compared to a period of 180� for orientation, differ-

ences in preferred orientation between 0� and 90� in
(C) are comparable to differences in preferred di-

rection between 0� and 180� in (D).
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our model, CPs are the result of both feedforward (bottom-up)

and feedback (top-down) processing. A stochastic increase in

firing of a sensory neuron does increase the probability of a de-

cision consistent with the activity of this neuron (feedforward).

In the absence of noise correlations caused by the decision

variable (Ecker et al., 2010), the strength of this effect depends

inversely on the number of sensory neurons contributing to the

decision (Shadlen et al., 1996; Haefner et al., 2013).

In our model, CPs at the beginning of the trial are primarily

due to this feedforward pathway, since no coherent top-

down belief has formed yet, i.e., the current belief over D is

only weakly correlated with the final choice. While we assume

an unbiased prior over the correct decision, biased expecta-

tions about the upcoming correct choice generally increase

CPs at stimulus onset, albeit through the feedback pathway.

At any point throughout the trial, the brain’s belief about the

correct decision reflects the accumulated sensory information

presented earlier in the trial. This constitutes prior information

about the likely retinal image at that point, which influences

the brain’s belief about the content of the image and, hence,

the responses of sensory neurons representing this belief. In

general, as the trial progresses and the top-down belief about

the correct decision becomes stronger, CPs are enhanced by

an increasing top-down component and increasingly reflect

the accumulation of evidence about the decision variable (Fig-

ures 6A and 6C). The crucial point here is that the posterior

belief over x at some time t within the trial depends on both

the current observation It, but also all previous observations

I1:::t. Information about these previous observations is commu-

nicated to a neuron representing xt via the posterior belief

over the correct decision, ptðDÞ at time t (Figure 6E, i.e.,

ptðDÞhpðD j I1; ::; ItÞ ).
Second, CPs in our model are largest for those neurons whose

preferred orientation is closest to the task-relevant orientations

(Figure 6B), a relationship in agreement with empirical data (Co-

hen and Newsome, 2009; Bosking and Maunsell, 2011). Since

neurons whose preferred orientation is aligned with the task

axes are also the most informative about the correct decision,

the relationship in Figure 6B implies a correlation between neuro-

metric thresholds and CPs, consistent with empirical findings

(Nienborg et al., 2012). As for noise correlations described

above, our model predictions concern the qualitative shape of

the CP dependence on time and preferred orientation, not their

magnitude. Regardless of the particular parameter values in

our model, CPs increase over time and are largest for neurons

most modulated by the task-relevant stimulus dimension. This

is in agreement with empirical evidence not just for coarse but

also for fine discrimination tasks (Purushothaman and Bradley,

2005) where neurons with the steepest tuning curve slope have

the highest CPs. Third, as for the amplitude of the noise correla-

tions, the magnitude of CPs is related to the degree to which the

brain has learned the task model. This predicts that the CP for

task-relevant neurons should increase with learning, as has

been observed empirically (Law and Gold, 2008).

Correlations between Stimulus and Behavior
The strength of the correlation between stimulus and behavior in

2AFC tasks is typically measured by the PK (Neri et al., 1999;

Ahumada, 2002; Nienborg and Cumming, 2009). The PK quan-

tifies how strongly the evidence in the stimulus is weighted in

the decision-making as a function of the time at which the evi-

dence is presented during the trial. Our model predicts that the

weighting decreases over time (Figure 7A) so that evidence pre-

sented early in the trial has a larger influence on the final decision
Neuron 90, 1–12, May 4, 2016 5
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Figure 5. Predicted Noise Correlations for Alternative Tasks Analo-

gous to Figure 4

(A) Three-alternative choice task (3AFC) is shown.

(B) Detection task is shown.
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than evidence presented near the end. This order effect is not

inherent to probabilistic inference—exact inference leads to a

constant PK as would be expected from the optimal solution—

but is a consequence of performing approximate online infer-

ence (sequential sampling in our model, also see Supplemental

Experimental Procedures). In our model, the reason for this

decrease is a self-reinforcing feedback loop involving sensory

and decision neurons (Figure 7C). In the absence of any stimulus

information, when the responses of the sensory neurons are

entirely determined by their prior, small deviations from an

exactly even (50-50) belief overDwill bias the brain’s belief about

x by top-down belief propagation. This bias in the sensory repre-

sentation in turn reinforces the initial deviation in the brain’s belief

overD in a feedforward fashion. Even if there is information in the

stimulus, as long as it does not dominate the top-down prior (as

is usually the case in threshold psychophysics), this mechanism

leads to early evidence having a larger impact on the final choice

than evidence presented later in the trial. Furthermore, the

strength of this order effect should depend on how strong the in-

fluence of the bottom-up stimulus evidence is on the sensory

representation compared to the top-down prior.

Both predictions are in agreement with empirical data. A

decreasing PK was found in the same coarse discrimination

task (Figure 7B) that reported CPs to be increasing over time

(Figure 6C) (Nienborg and Cumming, 2009). Here the stimulus

consisted of weak disparity signals embedded in noise. A recent

study in rats using a Poisson-clicks stimulus, on the other hand,

found a constant PK when the task was to report whether more

clicks were played to the left or the right ear (Brunton et al., 2013).

Here the individual clicks were highly super-threshold such that

the influence of the top-down prior compared to the bottom-up

likelihood was presumably negligible. Therefore, we predict

that as the volume of the clicks is reduced to detection threshold

level, or if the clicks are embedded in distractor noise, the PK for

the Poisson-clicks task should become downward sloping, too.

We emphasize that the model was not designed to contain this

self-reinforcement of beliefs but that this feature emerged as a

side effect of performing probabilistic inference in an online

fashion using a neural sampling-based implementation in a hier-

archical model. Its mathematical form is determined by the

structure of the task and it shares the same parameters that

determine magnitude and time course of noise correlations

and CPs.
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DISCUSSION

In this paper we have demonstrated how the structure of a

psychophysical task can be used to make empirically testable

predictions for neural responses from the old idea of visual

perception as probabilistic inference, even though the brain’s in-

ternal model for general vision is unknown. We have applied

these ideas to a simple 2AFC task and found that our model

naturally accounts for several findings that are hard to explain

in the traditional feedforward framework and makes new predic-

tions for neurophysiology and psychophysics. The crucial differ-

ence to previous models of this task, probabilistic (Beck et al.,

2008) or not (Gold and Shadlen, 2007), was our assumption

that the brain performs inference not only about the task-relevant

variables but also the variables represented by sensory neurons.

Strictly speaking, to perform a given task, one only has to

compute the posterior over the task-relevant variable(s). How-

ever, in general, these variables could be (and in real-life usually

are) many, including low-level as well as high-level features

represented at different levels of the visual hierarchy, and,

furthermore, these variables are usually not even pre-specified.

Decision-making in such a context requires inference over all

latent/unobserved variables, not just a subset pre-defined by

the experimenter. This assumption implies that the responses

of sensory neurons represent posterior beliefs, i.e., not just

certain stimulus features but also incorporating prior information

from the rest of the brain (Lee andMumford, 2003). This provides

a functional constraint on the top-down connectivity that is

heavily under-constrained by empirical data and, therefore,

often ignored (but see Rao and Ballard, 1999 and Wimmer

et al., 2015). Since the experimenter controls the task that deter-

mines the functional form of this top-down influence in our

normative model, the validity of this normative constraint can

be tested very directly. The first new and specific prediction of

our model, about the structure of the full correlation matrix in

primary visual cortex during a coarse orientation discrimination

task (Figure 4A), has since been confirmed by independent pre-

liminary evidence (Bondy and Cumming, 2013).

An important feature of our model prediction for the noise

correlation matrix between sensory neurons is that its principal

structure (two maxima and two minima and their location) is

the result of a normative approach and was not fit to the data

we aimed to explain. We assumed that the brain performs the

task using probabilistic inference. We did not assume that

the brain does so optimally and our approach makes explicit

the way in which the brain deviates from optimality. Suboptimal-

ity in our model is the consequence of three features. First,

sampling-based approximations of probabilities converge to

the exact solution only in the limit of infinitely many samples.

Since the brain can only generate a finite number of samples,

its solution to any problem will deviate from the optimal solu-

tion. Second, in conjunction with an online processing of the

evidence, we show this to lead to an overweighting of early evi-

dence, another deviation from optimality. Third, the internal

model that the brain has learned about the task will generally

deviate from the true external, experimenter-defined one. These

deviations from optimality are made explicit by our model and, in

fact, gave rise to its free parameters: the number of samples



A B

C D

E

Figure 6. Model Prediction for CPs

(A) Temporal evolution of the belief about thecorrect

decision D. Red curve shows the average posterior

ptðD= 1Þ as a function of time for those trials for

which the final choicewasD= 1. It is fixed to0.5 until

trial onset and accumulates evidence throughout

the trial. Thegrayscalemapshows thedistributionof

beliefs as a function of time (high probability in white

and zero probability in black). Each column repre-

sents a histogram of ptðD= 1Þ at time t.

(B) CP as a function of preferred orientation. Here

CPs were computed across the entire trial rather

than in small time bins as in (C), which is why their

magnitude is greater than in (C).

(C) Magnitude of CP as a function of time is shown.

(D) CP magnitude as a function of time based on

data recorded in area V2 for a disparity direction

task is shown (Nienborg and Cumming, 2009).

(E) Generative model used for the task extended

into the time domain is shown (Figure 3A after

integrating out the grating variables).
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generated per trial, the strength of the brain’s belief that each

rewarded decision is preceded by a grating of a particular orien-

tation in the stimulus, and the strength of the belief that a partic-

ular grating is characterized by a particular response of sensory

neurons.

At one extreme of the parameter range, the brain has not

learned the task at all and the task, therefore, has no impact

on sensory responses: task-dependent noise correlations, CPs

and PK would then be zero. The reason for this is that, in the

absence of a task, our model only consists of a fixed sparse-

coding model for V1. However, we remain agnostic about the

non-task-related correlations in sensory neurons and, strictly

speaking, our model only makes predictions for the difference

between before and after task learning. At the other extreme of

the parameter range, the internal model of the brain becomes

identical to the experimenter’s model, at which point the psycho-

physical performance of the model becomes optimal given the

constraints of the V1 part of the model (which we assume to

be fixed) and the online processing constraint. A direct predic-

tion from our modeling is, therefore, that task-induced CPs

and correlations should increase during task learning (Figure 8).

We emphasize that our qualitative predictions hold across

the entire model parameter regime: independent of the pre-

cise values for the parameters, CPs increase over time, PKs

decrease, and the noise correlation structure has two maxima

and twominimawhose locations are defined by the task-relevant

stimuli. At first sight, our prediction that the amplitude of the pre-

dicted correlation structure should increase with perceptual

learning appears to be at odds with the finding that perceptual

learning decreases noise correlations in visual and vestibular

tasks in area MSTd (Gu et al., 2011). However, that reduction

was only seen for the average correlations (for which our model

was not designed to make a prediction) and not for the slope of

the relationship between noise correlations and signal correla-

tions, which is only loosely related to the amplitude of the task-

dependent correlation matrix.

The role of correlations between sensory neurons in the prob-

abilistic inference framework is very different from that in the

traditional feedforward information-processing view.While noise
correlations typically limit the information about the external

stimulus that can be represented by populations of sensory neu-

rons (Zohary et al., 1994; Averbeck et al., 2006; Moreno-Bote

et al., 2014), or at least complicate the readout (Shamir and Som-

polinsky, 2006; Ecker et al., 2011), in the probabilistic inference

model task-dependent correlations reflect prior information

about the structure of the outside world (Berkes et al., 2011).

This information is communicated to the relevant sensory neu-

rons and, hence, modifies their responses. This belief propa-

gation is best seen in the increasing time course of CPs, which

mirrors the formation of the brain’s cognitive belief about the

correct decision (Figures 6A and 6C).

While attention and belief propagation have been argued

to employ the same biological mechanism (Krug, 2004), they

make different neurophysiological predictions in a 2AFC task.

To increase psychophysical performance in the traditional feed-

forward framework, attention needs to increase the responses of

neurons supporting both choices on the same trial. Otherwise,

enhancing the responses of neurons supporting one choice

only will, in the absence of any external attention cue that is valid

more often than not (a cue that is not present in the experiments

we model), simply lead to biased decision-making decreasing

psychophysical performance. Belief propagation, on the other

hand, increases the responses of only those neurons that sup-

port the choice believed to be more likely by the rest of the brain.

Only the latter mechanism, but not the performance-improving

kind of attention, leads to CPs. Furthermore, a gain change

that varies from trial to trial but acts equally on neurons support-

ing either choice (as required in order to improve performance)

implies equal noise correlations independent of which choice

the neurons support, in contrast to empirical findings (Cohen

and Newsome, 2008). (Also, the implied correlation matrix would

have peaks where our prediction shows troughs.) Finally, since

an alternation of attention would reduce performance and lead

to an inverse relationship between correlation strength and per-

formance (Ecker et al., 2016) (in contrast to Figure 8), and since

attention recently was found to be associated primarily with

decreased variability in input common to sensory neurons inde-

pendent of their task-related stimulus preference (Rabinowitz
Neuron 90, 1–12, May 4, 2016 7



A B C Figure 7. Time Dependency of PK

(A) Model prediction. Evidence early in the trial is

weighted more strongly than evidence presented

late in the trial.

(B) Empirical PK in a disparity discrimination task

is shown (Nienborg and Cumming, 2009).

(C) Information flow in our model: feedforward from

the retinal image It to the sensory representation xt
and from the sensory representation to the decision

D. Feedback is from decision to sensory represen-

tation and lateral within the sensory representation

(for equations see Supplemental Experimental

Procedures). Feedforward and feedback between

sensory representation and decision area form a

self-reinforcing loop entailing a decreasing PK.
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et al., 2015), we argue that belief propagation is the more

parsimonious explanation for the observed task-dependent

correlations.

The observation that the time courses of CPs and PKs differ

during the stimulus presentation has been a challenge to feed-

forward models of sensory processing and has been taken as

evidence for a feedback component in CPs (Nienborg and Cum-

ming, 2009). These findings are fully consistent with our model

where CPs contain both a feedforward and a feedback compo-

nent. The existence of a feedforward component canmost easily

be seen by the fact that CPs are larger than 0.5 at stimulus onset

when the model’s belief about the correct decision is still 50-50.

The magnitude of this bottom-up component follows the same

decreasing time course as the PK (Figure 7A) (Nienborg and

Cumming, 2009), with the difference accounted for by top-

down belief propagation. Furthermore, we have demonstrated

that the very same feedback signal that causes the increasing

CPs also causes a decreasing PK due to a positive feedback

loop between decision-making neurons and sensory neurons.

We stress that we did not hand-craft themodel structure in order

to fit these observations but that this feedback signal is a direct

result of performing online inference by sampling in this task.

There exist alternative explanations for a decreasing PK sug-

gesting that the brain inappropriately uses strategies optimal

for reaction-time tasks (integration-to-bound, Gold and Shadlen,

2007) or hypothesizing costs intrinsic to accumulating evidence

(Drugowitsch et al., 2012). However, our explanation demon-

strates that even if a neural decision circuit itself equally inte-

grates the signals it receives from sensory neurons over time,

as has been suggested recently (Brunton et al., 2013), its top-

down influence on the very same sensory neurons can lead to

early evidence being weighted more strongly than evidence

presented at the end of the trial if that evidence is weak. Future

work on extending our model to a reaction-time paradigm and

comparing its predictions with reaction-time data will be able

to assess the relative importance and explanatory power of

these different hypotheses.

Our study complements a growing body of literature suggest-

ing that sampling-based probabilistic inference may underly

higher perceptual and cognitive processes (Griffiths et al.,

2012; Vul et al., 2014), and it suggests that probabilities also

might be represented by samples in lower sensory processing

(given the compatibility with the data considered here). It is

particularly intriguing that basic visual perception appears to
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be susceptible to the same confirmation bias that is ubiquitous

in the context of higher cognitive reasoning (Nickerson, 1998).

If the same two mechanisms that contribute to a decreasing

PK in our model (a sequential sampling approximation and evi-

dence accumulation on the basis of inferred beliefs instead

of directly observed information) also underlie higher-order

cognition, then this suggests a new candidate explanation for

the confirmation bias, different from previous accounts (Lieder

et al., 2012). More generally, our framework bridges cognitive

science and systems neuroscience by constructing a rational

process model (Griffiths et al., 2012) combining the generative

model for the psychophysical task with knowledge about the

biological architecture and the neural sampling hypothesis.

Our work differs from a previous probabilistic model (Beck

et al., 2008) of the 2AFC task in two important aspects. First,

we assume that individual cortical sensory neurons represent

marginal posteriors over unobserved variables, while Beck

et al. (2008) assume that the population represents the likelihood

of a single unobserved variable. This aspect requires recurrent

connections within the sensory area as well as feedback con-

nections from higher areas that are missing in their model (see

Beck et al., 2011, 2012 and Grabska-Barwinska et al., 2013 for

probabilistic models incorporating recurrent connections).

Without the feedback connections in our model there would be

no task-dependent noise correlations, nor would there be CPs

that increase while the PK decreases. Second, our model differs

from that of Beck et al. in that the representation of probabilities

is sampling based (Fiser et al., 2010; Hoyer and Hyvärinen, 2003)

rather than based on a probabilistic population code (PPC) (Ma

et al., 2006). Preliminary evidence suggests, however, that

our results can be generalized to other neural representations

of probabilities, including PPC-based ones (Haefner, 2014; A.

Pouget, personal communication).

It has been suggested previously that priors also may been

encoded in feedforward weights (Ganguli and Simoncelli,

2010; Wei and Stocker, 2012). While this is likely for long-term

priors reflecting permanent statistics of the natural environment,

it appears impossible for the task-dependent context informa-

tion considered in our study that can vary on a trial-by-trial basis

(Cohen and Newsome, 2008) or indeed the influence of the stim-

ulus information at the beginning of a trial on later sensory beliefs

within the same trial (Figure 6E).

A recent paper (Wimmer et al., 2015) has presented a mecha-

nistic model that reproduces an increasing CP and a decreasing
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Figure 8. Relationship between Amplitude of Noise Correlation Structure and Psychophysical Performance: Stronger Correlations Reflect
Higher Performance

(A–C) Correlation structure for three models that differ in the strength of the bottom-up and top-down connections (quantified by parameter d [see Experimental

Procedures], indicated on top of each panel). As d increases from 0 (no learning), the correlation structure reflecting the 2AFC task emerges. Note the different

color scales in the three panels. d = 0 (A); d = 0.02 (B); d = 0.08 (C).

(D) Psychometric curves for four models. At d= 0 performance is at chance and as d increases the curves become steeper, i.e., performance increases. The

legend indicates the value of d for each of the simulated models. Note that we kept k constant for simplicity; during actual learning both d and k will change. For

description of model (Schwartz and Simoncelli, 2001) and corresponding population responses, see Figure S2.
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PK. There are similarities between the computational motifs of

mutual inhibition and a positive feedback loop between sensory

and decision neurons in their model and in ours. However, unlike

our model theirs is constructed in a bottom-up/data-driven

fashion and therefore cannot address the question of why the

brain is structured the way it is, especially since mutual inhibition

(explaining away in our model) and feedback connections (belief

propagation) decrease the psychophysical performance of their

model. Furthermore, their model is designed specifically for the

2AFC task under consideration, without relating it to the general

probabilistic inference problems that the brain has to solve dur-

ing natural vision.

A major open question in systems neuroscience concerns the

origin and role of correlated neuronal variability. It has long been

known that neuronal responses are correlated, and the devel-

opment of population-recording techniques is finally making

detailed measurements of these correlations feasible, in partic-

ular their magnitude, shape, and dependency on both stimulus

and cognitive variables. In the framework of probabilistic infer-

ence, the generative model for the stimulus in the task acts as

a prior on the variables represented by the sensory responses.

Since the generative model for the task is entirely under the con-

trol of the experimenter, this allows for designing experiments

with very direct predictions. We therefore hope our results can

inspire future experiments and provide a framework for analyzing

multi-neuron recordings in the awake brain and for linking these

recordings to otherwise hard-to-measure cognitive factors like

beliefs and task strategies.
EXPERIMENTAL PROCEDURES

Generative Model Learned by the Brain

We assume that the brain has learned the two crucial features of the coarse

orientation discrimination task that we are modeling: that there are exactly

two possible decisions, D= 1 and D= 2, and that they are related to the orien-

tation of the visual stimulus presented on the screen. We further assume

that the subject has learned that both choices are equally likely a priori,

pDðD= 1Þ=pDðD= 2Þ= 0:5. From correlating correct choices with the preced-

ing stimulus, the brain has to learn the task-relevant orientations j1 and j2.

Inevitably, there will be some level of uncertainty (tolerance) about the precise

orientations indicating choice 1 and choice 2. We model this uncertainty by
a circular Gaussian (von Mises) function around the correct orientation as

follows:

gi jD � Bernoulli

�
1

ngI0ðkÞ exp
h
k cos2

�
f
ðgÞ
i � jD

�i�
(Equation 1)

where gi is one of ng binary variables indicating the presence of a grating

with orientation f
ðgÞ
i in the stimulus, and jD corresponds to the target orien-

tation associated with decision D. The normalization is chosen to bePng
i pðgi = 1 jDÞ= 1, such that on average one of the grating variables is on.

k is a free parameter in our model that can range from 0 toN, where k= 0 rep-

resents no knowledge about which orientations are task relevant and N rep-

resents the limit of perfect learning, where the internal model is identical to

the generative model used by the experimenter. We assume that the task is

performed on the basis of an early sensory representation ( x, here primary vi-

sual cortex), such that each orientation variable gi corresponds to a particular

expected value for x. Again, we make a canonical circular Gaussian assump-

tion about the dependency between a grating variable gk representing orien-

tation f
ðgÞ
k and a Gabor-shaped feature xi with orientation f

ðxÞ
i in the image

as follows:

E½xi jg�= 1+ d
X
k = 1

ng

gkexp
h
l cos2

�
f
ðxÞ
i � f

ðgÞ
k

�i
: (Equation 2)

Here, 0<l and 0<d are free parameters (discussed below). Since the xi are

meant to model neurons in V1, we model their relationship to the image on

the retina by a standard sparse-coding model (Olshausen and Field, 1997;

Hoyer and Hyvärinen, 2003) as follows:

pðxi jgÞ= 1

ti
expð � xi=tiÞ HðxiÞ (Equation 3)

pðI j xÞ=N
 
I :

1

nx

X
i = 1

nx

PFixi ;1

!
(Equation 4)

with tihE½xi jg� as defined in Equation 2,H is the Heaviside function restricting

x to positive values, and 1 is the identity matrix. (The xi can be interpreted as

firing rates here with no specific assumption about the spike productionmech-

anism.) Thematrices PFi contain the projective fields for each xi and the actual

image on the screen is a noisy version of their linear superposition weighted

by x. Since the only stimulus dimension relevant for our results is orientation,

we simply assume a bank of Gabor-shaped filters (aspect ratio 2:1), which

only differ in their orientation, uniformly spaced between 0 and p. (While the

properties of sensory neurons are highly heterogeneous [e.g., Ecker et al.,

2011 and Goris et al., 2015], this heterogeneity is inconsequential for the re-

sults presented here.) For d= 0, the model for the sensory responses becomes

independent of the task and the prior over x is sparse and independent. As d in-

creases, the expected intensity of the pattern associated with the presence of
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Please cite this article in press as: Haefner et al., Perceptual Decision-Making as Probabilistic Inference by Neural Sampling, Neuron (2016), http://
dx.doi.org/10.1016/j.neuron.2016.03.020
a grating in the stimulus increases. The generative model described here de-

termines the sampling equations that are provided in the Supplemental Exper-

imental Procedures.

The generative model described above will be normative, i.e., correct, only

for stimuli that actually have been generated from it. Despite its deviations from

the models actually used by the particular experiments to which we compared

our data (Cohen and Newsome, 2008; Nienborg and Cumming, 2009; Brunton

et al., 2013), it captures the two crucial features of a 2AFC orientation discrim-

ination task: (1) the expectation of an oriented stimulus of some orientation,

and (2) the expectation that only one of two possible orientations (or ranges

of orientations) will be shown. k and l together with the Gabor-shaped filters

determine the orientation bandwidth of the expected oriented stimulus, and

d can be interpreted as the expected saliency or contrast of the signal in the

noise.

In tasks where the stimulus is dynamically changing within a trial, evidence

about the correct decision has to be accumulated over time. In this case, the

brain will learn that, while there is only one correct choice per trial, the image

and latent variables other than D can change from stimulus frame to stimulus

frame. As a result, the posterior overD evolves over time starting with the initial

prior p0ðDÞ, with ptðDÞ � pt�1ðDÞpðIt jDÞ for independent It�1 and It (Beck

et al., 2008). Such an accumulation of evidence is compatible with existing

neurophysiological observations in putative decision-making regions of the

brain (Gold and Shadlen, 2007), providing a graded representation of the

instantaneous belief over the correct decision D. In our hierarchical model,

the posterior over D is not updated based on the observed variable I directly

but based on the samples drawn from the posterior over g, pðg j ItÞ. We denote

the number of samples generated on the timescale on which the brains as-

sumes the It to be statistically independent of each other by ns. In our model,

we update the belief over D in an online fashion (Gold and Shadlen, 2007)

based on the individual samples as follows:

log
p
ðkÞ
t ðD= 1Þ

p
ðkÞ
t ðD= 2Þ

zlog
p
ðk�1Þ
t ðD= 1Þ

p
ðk�1Þ
t ðD= 2Þ

+
1

ns

log
p
�
gðkÞ
t jD= 1

�
p
�
gðkÞ
t jD= 2

�
with k = 1:::ns and p

ð1Þ
t ðDÞhp

ðnsÞ
t�1 ðDÞ, and where g

ðkÞ
t is the corresponding sam-

ples drawn from pðgt j It ;DÞ. ns constitutes a free parameter in our model and

can be constrained experimentally by the time course of the CP: the smaller

the ns the faster the temporal increase in CP.

In our simulations we explicitly model x and g. Furthermore, we assume that

an area exists in the brain (e.g., LIP; Gold and Shadlen, 2007; Beck et al., 2008)

that accumulates the sensory evidence and represents the brain’s current

belief over the correct decision. This belief over D acts as a top-down prior

for the sensory representation, as required by full probabilistic inference

over all latent variables, i.e., including x and g, and not just the decision vari-

able D. We note that two features responsible for the decreasing PK are easily

overcome in typical machine learning applications. First, if the updating of the

posterior over D is not performed after every sensory sample but in batches,

e.g., after every ten samples, then evidence is weighted more equally over

time. We do not think this is biologically plausible since it would require the

brain to cache incoming samples and effectively ignore them during the cach-

ing time, before updating the posterior, without explicit knowledge when

would be the right time for an update of its belief over D. Instead, we believe

that it is more plausible that evidence is continuously integrated. Second,

generating more than one chain of samples in parallel (e.g., particle filtering;

Doucet, 2001) also would prevent the PK from decreasing and has been

suggested previously (Lee and Mumford, 2003). Investigating the source of

the decreasing PK in more detail as suggested in the Discussion will there-

fore give further insights into what kind of sampling scheme the brain is

implementing.

Numerical Details

We performed Gibbs sampling in the generative model (see the Supplemental

Experimental Procedures). Trials start after the burn-in period and last 80 com-

plete samples, i.e., 80 samples are generated from each variable in the model.

For the simulations underlying Figures 4, 5, 6, and 7 we used the following:

k= 1, l= 3, d= 0:08, nx = 1; 024 and ng = 256. The only exception is the 3AFC

Figure 5A where we used k= 3, i.e., a narrower range of orientations related
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to each choice. We further assumed ns = 20. Since these are free parameters

in our model, we concentrate on qualitative rather than quantitative predic-

tions. However, when modeling a particular experiment, they can be con-

strained by fitting them to observations, in particular CPs, noise correlations,

and classification images.

The noise correlations and CP time course were computed using a gray

screen as stimulus in order to eliminate stimulus-induced influences and to

avoid having to correct CPs for them (Nienborg and Cumming, 2009). The

PK time course was computed using a dynamic stimulus in which randomly

switching gratings were embedded in Gaussian noise; 16 independent stim-

ulus frames were presented per trial.
CP and PK

The CP of a particular neuron with respect to choice 1 can be defined as

the probability that a random sample from the neuron’s response distribution

preceding choice 1 is larger than a sample from the same neuron’s response

distribution preceding choice 2 (Britten et al., 1996).

The PK can be defined as the amplitude of the classification image as a func-

tion of time (Nienborg and Cumming, 2009). The classification image is the dif-

ference between themean stimulus preceding choice 1 and themean stimulus

preceding choice 2 (Neri et al., 1999; Ahumada, 2002). To compute the time

course of the PK, one computes the classification image (essentially the

choice-triggered average of the stimulus) as a function of time, t, within a

trial, PKt = hstiD= 1 � hstiD=2, where hstiD=d represents the average over the

external stimuli presented at time t, for all trials that led to decision D=d.
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