Journal of Experimental Psychology: General
2005, Vol. 134, No. 4, 521-537

Copyright 2005 by the American Psychological Association
0096-3445/05/$12.00 DOI: 10.1037/0096-3445.134.4.521

Encoding Multielement Scenes: Statistical Learning of Visual
Feature Hierarchies
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The authors investigated how human adults encode and remember parts of multielement scenes com-
posed of recursively embedded visual shape combinations. The authors found that shape combinations
that are parts of larger configurations are less well remembered than shape combinations of the same kind
that are not embedded. Combined with basic mechanisms of statistical learning, this embeddedness
constraint enables the development of complex new features for acquiring internal representations
efficiently without being computationally intractable. The resulting representations also encode parts and
wholes by chunking the visual input into components according to the statistical coherence of their
constituents. These results suggest that a bootstrapping approach of constrained statistical learning offers
a unified framework for investigating the formation of different internal representations in pattern and

scene perception.
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The purpose of the current work is to investigate how human
adults develop new visual representations to encode and recognize
both familiar and novel objects and scenes in situations in which
the visual features in the input are hierarchically structured. We
began by utilizing a statistical learning framework, in which two-
dimensional information was encoded by the visual system using
a modest number of memory traces, which in turn were combined
in a variety of ways to form higher order visual representations.
The focus of our experiments was on the origin of these represen-
tations, their relation to the statistical regularities of the visual
environment, and the feasibility of a statistical learning mechanism
for acquiring such representations from a hierarchically organized
input so that they were sufficient for recognition. In a series of five
experiments, we investigated how humans encode and remember
higher order visual shape combinations by simple observation of
multielement scenes without performing any particular task or
receiving specific feedback, a situation that mimics the process of
visual encoding in a natural context.

Our program of research built on the dominant approach to
developing visual object representations, which proposes a trans-
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formation of early neural codes into more complex specialized
representations, or “features,” that retain only part of the input
information as it moves to higher levels of representation in the
visual cortex (Biederman, 1987; Marr, 1982). This required the
selection of an appropriate set of features from the large pool of
potential candidates by using powerful learning mechanisms that
can, over a range of time scales (from seconds to years), acquire
information about objects, surfaces, and scenes at multiple spatial
scales and develop feature detectors of different complexities to
solve particular tasks.

This approach raised two fundamental questions. First, what
determines the elementary feature detectors used by the visual
system to represent the whole or the different parts and compo-
nents of a given object or scene? Second, what is the computa-
tionally tractable process that enables new feature detectors to
develop so that visual representations remain efficient without
losing the capacity to capture unfamiliar inputs?

Regarding the first question, it is clear that the visual system can
identify and, therefore, must be able to represent and remember a
vast number of highly complex two-dimensional shapes, three-
dimensional objects, and multiobject scenes. However, there are
very few hypotheses about what sort of features might serve
perception beyond the early stages of the visual pathway. Thus, it
is not surprising that even less is known about whether and how
detectors of these features develop based on visual experience. It
is not even clear whether there is a hierarchy of visual features,
and, if so, at what level of the visual feature hierarchy learning can
take place. Moreover, despite demonstrations of perceptual learn-
ing in many visual tasks (Ahissar & Hochstein, 1997; Ball &
Sekuler, 1982; Fiorentini & Berardi, 1980; Karni & Sagi, 1991;
Poggio, Fahle, & Edelman, 1992; Ramachandran & Braddick,
1973), there is no consensus about what aspects of the visual input
can or cannot be learned or whether perceptual learning is related
to the normal process of developing higher order visual represen-
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tations. Regarding the second question, any identifiable visual
feature can be broken down into smaller subfeatures while remain-
ing part of some larger superfeature. This high level of embed-
dedness means that the learning problem is defined in a very large
dimensional space that, in turn, poses a hard constraint on the
feasibility of the candidate learning mechanisms.

We address these two questions within a statistical learning
framework, in which the development of a new feature is based on
the gradual collection of evidence from a corpus of visual scenes.
Therefore, in our view, developing a new feature detector and
remembering a fragment of a previously seen, but unfamiliar,
scene are intimately linked on a representational level. In this
framework, a feature is defined as a subset of preexisting stored
traces of visual signatures linked by past associations that the
individual is able to remember when it is presented independently
of its original context. A visual signature can be any previously
acquired feature as well as simple measures of visual information
in the scene, such as contrast discontinuities, light patches, color
combinations, edge structures, and so forth. Thus, a feature can be
the stored trace of an entire scene as well as that of the smallest
individual signature of the scene or any combination of signatures
of arbitrary complexity. We explore the general hypothesis that
there is a limited set of general constraints on encoding that
enables human adults to extract higher order visual features in a
statistical manner, and we try to identify one of these general
constraints that make statistical visual feature learning computa-
tionally plausible. We begin by highlighting a general computa-
tional aspect of statistical learning that shows why a statistical
learning approach to extracting visual features requires constraints
to render it plausible. We then introduce an experimental paradigm
that enables us, independently of specific visual attributes, to ask
fundamental questions about how remembering visual features is
related to the statistical information in the input. Finally, we
present the results from five statistical learning experiments that
suggest a particular implicit strategy used by humans to derive
visual memories of fragments from hierarchically organized mul-
tielement scenes. The results of these experiments suggest that a
powerful constraint, embeddedness, is automatically activated
when encoding complex visual inputs and enables a statistical
learning mechanism to account for the chunking of the input into
parts.

Computational Constraints on Statistical Learning

Visual images reside in a very high dimensional data space, but
in an entire lifetime humans only encounter a very small and very
specific subset of the images from this high-dimensional space
(Field, 1994). For example, the set of images composed of only
10 X 10 pixels, each of which can have either a black or white
luminance value, consists of 2'° unique images, which is about 20
orders of magnitude greater than the number of images that the
visual system encounters in a lifetime.! For comparison, in any
moment each retina forwards about 1 million (10°) pixels of
information to the brain. Thus, the problem of visual recognition is
defined in an extremely large dimensional data space that defies
straightforward learning methods, unless there are biases that
guide the learning process. In addition to this problem of dimen-
sional complexity, visual recognition does not operate on a set of

static images but on a dynamic sequence of images that typically
change several times per second (either because the stimulus itself
changes or because the eyes move). Thus, visual perception is a
serial process in that there is a nearly continuous updating of
scenes containing many objects distributed over time.

The foregoing aspects of visual structure and visual processing
impose strong constraints on how any statistical learning mecha-
nism could be used in the domain of visual learning. Even if some
of the correlations of subelements in a scene could be computed in
parallel when searching for a feature, the amount of input data—in
the case of vision the number of visual scenes and, within scenes,
the number of co-occurring individual elements—required to de-
cide what a feature might be grows exponentially with the number
of added elements. In a large dimensional space, this leads to
intractable computational demands.

This well-known problem of insufficient data for large learn-
ing problems is called the “curse of dimensionality” (Bellman,
1961), and it sets a hard limit on what can be learned in high
dimensional spaces with a brute force approach. The only way
to handle the curse of dimensionality is to reduce the size of the
problem by decreasing the number of relevant dimensions
within which new associations have to be learned (Geman,
Bienenstock, & Doursat, 1992). The size of a learning problem
can be reduced by imposing particular constraints on the learn-
ing process based on some assumptions about what should be
learned. Because visual recognition works in a high dimen-
sional space, and if humans use statistical learning to acquire
new higher order features, then it can only operate successfully
by imposing some general constraints on the learning process
by the visual encoding and recognition system.

An Observational Learning Paradigm

We propose a three-component framework, using an observa-
tional learning paradigm, for investigating visual statistical learn-
ing in humans. The first component is that feature learning is an
unsupervised, natural process that is quite different from the per-
ceptual learning paradigm (with feedback) customarily used for
studying human visual learning. The second is that the fundamen-
tal problem in learning higher order features is not that Gaussian
noise obscures some of the elements, thereby preventing the cor-
rect underlying associations from being extracted. Rather, there are
far too many possible combinations of elements that all could be
potentially relevant higher order features, thereby creating a com-
putational problem in the search for the features that are meaning-
ful. The third is that to investigate the general mechanisms of
visual learning, it is necessary to use stimuli with characteristics
that cannot skew the results because of some low-level built-in
constraint. Simple visual stimuli can form higher level features by
recourse to already existing lower level grouping principles that
have little to do with learning. We elaborate on each of these three
issues in some detail.

! This is a rough approximation, assuming that humans can observe
three new independent images per second because of saccadic eye move-
ments, considering their life span is about 80 years, and not counting any
idle time due to sleeping.
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Visual learning is often studied in perceptual learning paradigms
(Ahissar & Hochstein, 1997; Ball & Sekuler, 1982; Fahle &
Poggio, 2002; Fiorentini & Berardi, 1980; Karni & Sagi, 1991;
Poggio et al., 1992; Ramachandran & Braddick, 1973). In these
paradigms, the individual is presented with a well-defined task that
is explained verbally by the experimenter. With repetitive training
(including feedback), the individual’s performance improves. Al-
though this paradigm is useful in characterizing the conditions
necessary for skill learning, it is quite unrealistic as a model of
acquiring higher order visual features in the natural environment:
For the most part, higher order features are learned without a
teacher or a task.

In our observational learning paradigm, the only task facing
the individual is to pay attention to the scenes. The statistical
complexity of the scenes is under tight experimental control and
allows for higher order features to emerge. Because the goal of
our studies is to investigate general aspects of statistical learn-
ing, we avoid stimuli that invoke specific mechanisms already
implemented in the visual system that might mistakenly be
interpreted as evidence of learning. Some of these special
mechanisms are well known, such as greater sensitivity to
horizontal than to oblique structures or the tendency to regu-
larize contour shapes or fill in gaps. These special mechanisms
are important for a full implementation of the many constraints
on visual perception, and they should be investigated in their
own right (Field, Hayes, & Hess, 2000; Kourtzi, Tolias, Alt-
mann, Augath, & Logothetis, 2003). However, as an initial
strategy for studying the most general constraints on visual
learning, one needs a stimulus set in which the processing of the
statistical relationships between subelements can be investi-
gated independent of these other special-purpose mechanisms.

Paradoxically, this goal can best be achieved by not using the
simplest stimuli. One might think that displays with a number
of localized Gabor patches would suit the task. Gabor patches,
a class of fundamental stimuli used in visual psychophysics,
consist of a set of oriented bars generated by modulating a
one-dimensional sine-wave intensity function by a two-
dimensional Gaussian function. The resulting stimulus is a
round patch with a limited number of dark and light stripes
contained within it. However, Gabor patches are very similar to
each other, and this becomes a problem in generating appropri-
ate scenes. When only a few Gabor patches are used in each
display, the visual input is too simple to provide the necessary
environment for studying statistical learning. When more than a
few Gabor patches are shown in the display, the visual system
immediately invokes a number of previously developed
midlevel representations based on configural or grouping mech-
anisms. For example, a cluster of horizontally oriented Gabor
patches will pop out of a background array of randomly ori-
ented Gabor patches. Thus, the statistical learning mechanism
will work on these intermediate representations rather than on
the structure controlled explicitly by the experimenter.

For our purposes, better control can be achieved when arbitrary
configurations of complex, highly discriminable novel shapes are
used as the elements. Because we are interested in the general
properties of statistical learning, these properties can be investi-
gated using complex shapes just as well as they can by using
Gabor patches or other simple stimuli without interference from

low-level mechanisms already in place. Moreover, by randomly
assigning shapes across individuals, any effect of low-level feature
similarity (or spontaneous labeling) can be eliminated. The key
point is that eliminating low-level statistics requires the partici-
pants to rely only on the relevant higher level statistical relations
that are embedded in spatial configurations of the shapes, and these
statistics can be controlled very precisely. As a result, the task
facing the learner is that any subelement in the scene can be
associated with any number of others to form a new higher order
feature. As opposed to Gaussian noise, this creates a problem of
combinatorial noise; that is, even the bad combinations of subele-
ments are potentially valid feature candidates. Thus, the observa-
tional learning paradigm allows us to investigate the general sta-
tistical rules for how mental representations of higher order
features naturally emerge when the main challenge is not low
visibility but unfamiliarity with the underlying structure of a
complex input.

The Relation Between Embeddedness and Statistical
Visual Learning

In a series of studies (Fiser & Aslin, 2001, 2002a, 2002b), we
have shown that adults and infants can extract the conditional
probability statistics between elements that cohere across scenes.
The Fiser and Aslin (2001) study used an inventory of 12 complex
shapes and introduced statistical structure by consistently pairing
shapes in particular fixed spatial relations (base pairs) and gener-
ating a large number of scenes by presenting several base pairs (in
all possible arrangements) within each scene (see Figure 1). The
experimental designs used with adults are similar to those used in
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Figure 1. The stimuli used by Fiser and Aslin (2001) and in the current
series of experiments. (A) Twelve arbitrary shapes, randomly assigned to
pairs (or larger groupings), were used in all experiments. (B) A typical
scene composed by three randomly selected base pairs.
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the current series of studies and are detailed in Experiment 1. The
Fiser and Aslin (2002b) study with 9-month-olds also used 12
shapes, but they were less complex and arranged in scenes con-
taining fewer elements. The overall pattern of results from these
two studies was clear and unequivocal. Both adults and infants
exhibited a very strong sensitivity to the statistical relationships
between elements after passive viewing of the visual displays for
2 to 20 min (depending on the experimental conditions). Even
when joint probabilities did not differ between tested pairs of
elements, and therefore individuals could not rely on the co-
occurrence frequency of element pairs, they extracted conditional
probabilities between elements in particular spatial configurations.
Thus, both adults and infants are sensitive to the statistical struc-
ture of moderately complex scenes, and they extract this structure
using conditional probabilities without the assistance of feedback
during an observational learning phase.

The current series of experiments builds on the results of Fiser
and Aslin (2001) by focusing on the question of feature hierarchy.
Apart from the individual shapes, there is no obvious set of
elementary building blocks in the groups of shapes in Fiser and
Aslin (2001) that could serve as a universal inventory of features
across all possible scenes. Rather, each scene can be decomposed
into many different potential features varying in spatial scale and
complexity. Individuals could remember individual shapes, shape
pairs, triplets, and so forth, up to whole scenes. Moreover, these
features are embedded within each other, forming a hierarchy from
low-level subfeatures to high-level features. This situation is rem-
iniscent of natural conditions in which the representation of scenes
can be achieved in different ways, depending on which of the
many embedded features are relevant. This embeddedness of fea-
tures in the real world creates a very high level of redundancy
among the potential features, and it is also the main reason why
scenes encountered by human learners are confined to a very small
part of the entire space of potential visual inputs. This high level
of redundancy can, in principle, be exploited with an appropriate
constraint to reduce the computational demand on the visual fea-
ture learning mechanism. Thus, our stimuli are suitable for explor-
ing how humans remember and recognize visual inputs with highly
embedded features and, in turn, can shed light on how humans
learn new visual features. We used our experimental paradigm to
investigate a potential constraint that the visual system might use
to avoid the curse of dimensionality: eliminating (or reducing the
weight of) features that are embedded in larger features but never
appear outside these larger features. The following experiments
examine whether the extraction of embedded features by humans
complies with this embeddedness constraint.

Experiment 1

The goal of this experiment was to investigate how adult ob-
servers extract the relevant statistics of multielement scenes when
the individual elements are arranged spatially into fixed triplets of
shapes and these triplets are then used to create scenes. We used a
modified version of the observational learning paradigm from
Fiser and Aslin (2001), in which participants viewed a large
number of six-element scenes composed of coherent base struc-
tures (in this case, two base triplets rather than three base pairs).
These base triplets were presented in a grid such that they were

spatially adjacent to each other. As a result, an element from one
base triplet appeared most of the time adjacent to an element from
a different base triplet, thereby forming one or more element pairs
spanning two base triplets that had lower coherence (joint and
conditional probability) than element pairs within a base triplet.

Because the structures in the scenes—the pairs, triplets, or
n-tuples—themselves consist of distinctively shaped elements,
each of which were decomposable into subparts, there was no a
priori reason for the observers to select any individual shape or set
of shapes as an important feature of the scene. For example, they
did not know that the scenes had a triplet-based structure; they
simply saw a grid containing six moderately complex shapes
because each 2-s scene was presented during a passive learning
phase. Thus, as far as the participants were concerned, each scene
was full of complex embedded features. We consider a feature to
be embedded in another feature if all of its elements are contained
within the higher order feature. Thus, a coherent triplet of shapes,
A-B-C, contains three embedded pairs (A-B, B-C, and A-C) and
three single elements. At issue is how these various levels of the
feature hierarchy are extracted during learning and represented in
memory for later recognition.

Method

Participants. Undergraduates from the University of Rochester were
participants in this experiment and in those that follow. They were paid $10
per session for their participation. Participants ranged in age from 18 to 25
years; the ratio of male to female participants was approximately 50:50 in
all experiments. All participants were naive with respect to the purpose of
the experiment and participated only in one experiment throughout this
study to eliminate any cross-experiment contamination. Experiment 1
included 20 participants.

Stimuli.  The same set of 12 arbitrary black shapes, of moderate com-
plexity and presented on a white background, used by Fiser and Aslin
(2001) were combined to generate 212 unique scenes by placing 6 of the
12 shapes in a 5 X 5 grid. The extent of the 5 X 5 grid was 11.4°, and the
maximum size of each shape was 1.14°. The scenes were presented on a
21-in. Sony Trinitron SO0PS monitor at 1,024 X 728 resolution from a 1-m
viewing distance. Stimuli were controlled by a Macintosh G3 computer
using Matlab and the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).

Unknown to the participants, the 12 shapes were organized into four
base triplets, in which each base triplet refers to three given shapes that
always appeared in a particular spatial relation (Figure 2). Base triplets can
be thought of as objects or rigid parts, in that if one of the shapes appeared
in a given scene, the other two shapes always appeared in an invariant
spatial relation to the first shape across all scenes during familiarization.
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Figure 2. The base triplets of Experiment 1 and a typical scene.
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The assignment of the 12 shapes to base triplets was randomized across
participants to ensure that specific shape configurations were not unusual
and more (or less) easily learned.

Spatial positioning of the elements within the visible grid eliminated
uncertainty about positional coding, and spatial adjacency between base
triplets ensured that the learning of base triplets was not facilitated by
obvious segmentation cues. Given the constraints on base-triplet orienta-
tion and spatial adjacency, it was not possible to have a completely uniform
distribution of individual shapes across all grid positions. However, within
the central nine cells of the grid, the distribution was fairly homogeneous.
Because all patterns appeared in the middle of the grid during the test
phase, this mild inhomogeneity during the learning phase was unlikely to
affect the outcome of the experiment.

A total of 112 different six-element scenes were generated by randomly

positioning two of the four base triplets on the grid so that at least two
elements of each triplet would have an element from the other triplet in a
right or left neighboring cell of the grid. This arrangement ensured that the
elements of the two triplets were completely meshed with each other and
there was no way, based on midlevel grouping cues, to segment the two
triplets. Each base triplet, and therefore each pair embedded in the triplet,
as well as each of the 12 elements appeared an equal number of times
across the 112 scenes. Shape pairs with neighboring elements that were
contained entirely within a base triplet are referred to as embedded pairs.
In addition to the designed triplet structures, a large number of accidental
pairs, triplets, and higher order feature combinations occurred in the
familiarization scenes.
As in Fiser and Aslin (2001), there was a familiarization
phase followed by a test phase. During the familiarization phase, partici-
pants saw each of the 112 possible scenes only twice (in random order) in
an 11-min movie, with a scene duration of 2 s and a 1-s pause between
scenes. Participants were told to pay attention to the continuous sequence
of scenes, and no further instructions were given. There was a 3-min break
between the familiarization phase and the next test phase.

After the familiarization phase, participants completed a series of tem-
poral 2AFC tests with four types of trials in random order. The four test
types consisted of single elements, pairs, triplets, and quadruples, so that
the participants would not pay special attention to either the pair or triplet
test trials or to shape combinations that were the focus of our investigation.
In single trials, two grids appeared after each other, each containing a
single element in the middle of the grid; in pair trials, an isolated pair
appeared in the center of each grid; and so on. In the single trials, the
participants were asked to choose which of the single elements they
thought appeared more frequently during familiarization. In all the other
types of test trials, the participants were asked to select the structure that
looked more familiar based on what they viewed during the familiarization
phase. Because all single shapes appeared an equal number of times during
familiarization, the single trials were filler trials with no correct answer.
Similarly, because there were no strong quadruple structures embedded in
the familiarization phase, both quadruples in the quad trials were set up
with dummy shape combinations never seen before together to serve as
foils. In other words, in all quadruple trials, both scenes were made up from
four elements that never appeared in that particular configuration, and so
there was no correct answer as to which would be more familiar. Similarly,
there were dummy pair and triplet trials; both structures in the trial had
element arrangements that never appeared during familiarization. These
trials were added to keep the appearance frequency of individual shapes in
each type of test trial equal. All single shapes and configurations of shapes
were presented centrally during the test trials, and the order of the two test
items in a trial was counterbalanced. All together, there were 38 test trials,
including the 12 nondummy trials. Each test display was presented for 2 s
with a 1-s pause between them. Participants had to press a computer key
(the 1 or 2 key) depending on which of the two test patterns was judged to

Procedure.

be more familiar (or more frequent in the single-element test trials). The
presentation order of the test trials was individually randomized.

Intermixed with the foil trials, the 12 key test trials consisted of two
types: (a) comparison of a base triplet with a triplet composed of shapes
that never appeared in that particular spatial configuration (pairwise or
triplet), and (b) comparison of an embedded pair from within a base triplet
with a pair of shapes that never appeared next to each other during the
familiarization phase but could appear in the same familiarization display.
In both of these types of test trials, one pair or triplet was statistically
coherent (conditional probabilities [CPs] = 1.0) and the foil pair or triplet
was incoherent (CPs = 0.0). We were particularly interested in whether
participants first extracted the pair structures embedded in the triplets or
whether they learned the larger triplet structures and the smaller embedded
structures in parallel.

Results and Discussion

Because in the test trials with single elements or quads there was
no correct answer (neither member of the trial had higher statistical
coherence), the participants were expected to select each single
shape or quad on a test trial as often as the other member of the
trial. Indeed, in this experiment, as well as in the tests using
dummy trials in all subsequent experiments, the participants
showed no significant deviation from chance performance (p >
.05). The results of the crucial tests in Experiment 1 with pairs and
triplets are shown in Figure 3. After 11 min of viewing during the
familiarization phase, participants reliably selected the base triplets
over random triplets, #(19) = 2.89, p < .001. (All ¢ tests in the
current study were two-tailed.) Because in this experiment joint
and conditional probabilities covaried, either of these two sources
of statistical information could have been used to select the base
triplets over the random triplets. In contrast to the triplets, partic-
ipants did not reliably select the embedded pairs over random
pairs, #(19) = 0.81, p = .428. In other words, although the base
triplets were reliably distinguished from random triplets, the co-
herent subfeatures of the base triplet (i.e., the embedded pairs)
were not discriminable from a random pairing of elements.

However, because the mean performance on the pair test trials
was slightly above 50%, the difference in performance between
pairs and triplets was not significant, #(19) = 1.42, p = .171. To
determine whether this absence of a significant difference was due
to statistical power, we collected data from an additional 20
individuals and combined the results from all 40 participants. The
mean percentage of correct responses for pairs and triplets re-
mained almost exactly the same (56.1% and 67.9%, respectively).
The preference for base pairs still failed to exceed chance, #39) =
1.52, p = .138, and the preference for base triplets remained
significantly above chance, #39) = 3.83, p < .0005. However,
now with more statistical power, the difference in performances
between pairs and triplets approached significance, #(39) = 1.83,
p = .074.

When the participants were asked after the test whether they
noticed anything during the practice, typically they did not report
the true underlying structure of the scenes. They also reported that
they were guessing during the test, and their performance and their
confidence in their performance did not correlate well. Even
though these observations were reported during an informal de-
briefing chat and they were not quantified rigorously, they suggest
that the knowledge of the underlying triplet structure of the scenes
emerged through an implicit learning process.
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Figure 3. The results of Experiment 1. Participants chose base triplets reliably more often over random triplets,
but they failed to do so with base pairs that were embedded in the triplets over random pairs. Error bars

represent = 1 SEM.

These results appear to contradict the notion that a larger
complex feature (the base triplet) is built up hierarchically from
its constituents. This may seem paradoxical because it is clear
that the representation of the base triplets that enabled the
individual to select them over random triplets must in some way
use the information carried by its embedded pair-based struc-
ture. However, on further consideration, there is no paradox if
one assumes that these results only imply a reduction in the
accessibility of the substructures embedded in larger, more
complex structures once these larger structures have been
learned. In other words, the representation of the larger triplet
structure relies on some information carried by the pair-based
substructures, but the substructures are not represented explic-
itly (at least not all of them) so that they can be accessed as
separable features. Note that by the term represented explicitly
we refer to the fact that these elements are more accessible for
recall and, therefore, presumably for using them as building
blocks for higher order features. We do not postulate anything
about the neural realization of explicitness in terms of repre-
sentational units, zero storage for all embedded elements, or
computational weighting to favor the larger structures while
suppressing the smaller ones. For example, the actual realiza-
tion could weight positive and negative evidence from subsets
of the input, and if the sum passes some threshold it is taken as
evidence for the existence of the higher order feature in the
scene. The difference between the triplets and the embedded
pairs in this scheme is that the triplets gain evidence that passes
the threshold while the pairs do not. Thus, the triplets are
represented strongly enough to be building blocks of further
memory traces while the pairs are not (or less so), even though
they might activate some limited trace.

It is important to note that the discrepancy in performance
between triplet and pair test trials is not because the triplet tests
were easier than the pair tests as a result of the fewer number of
potential triplets compared with potential pairs in the scenes. The
numbers of possible pairs and possible triplets (considering only
neighboring elements) across all scenes of the familiarization
movie were 785 and 845, respectively. This means that the average
number of potential pairs and potential triplets in each familiar-
ization scene was 7.00 and 7.54, suggesting that a particular triplet
should certainly be no more probable to remember than a partic-
ular pair. The pair—triplet difference in performance also cannot be
explained by special Gestalt principles of shape arrangement.
Although it is true that two of the shapes used in the experiment,
referred to as arrow and line, could represent an easy-to-encode
special case, a breakdown of the participants’ errors revealed no
differential bias to select either of these shapes (30% vs. 35% for
lines and arrows, respectively).

Nevertheless, two possible explanations of the results should
be considered before accepting the hypothesis that representa-
tions of substructures embedded within a larger structure tend
to be suppressed during visual learning. The first possible
explanation of the results is based on the method of testing, and
the second is based on the structure of the familiarization
movie. In particular, the first potential explanation is that our
test method of using mixed test trials with single elements as
well as large structures up to quadruples interfered more
strongly with remembering the smaller pair features than with
remembering the larger triplet features. In other words, across
all test trials, many more pairs (all the pairs and the embedded
pairs of triplets and quadruples) than triplets were shown, and
this could lead to potentially more confusion regarding remem-
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bered pairs from the familiarization phase. The second possible
explanation is a scale effect; that is, when the familiarization
scenes are composed exclusively of larger triplet structures and
the scenes always contain many elements, this might lead
participants to unconsciously attend to larger structures. As a
result, processing of the smaller pair structures would be sup-
pressed in general rather than because they are embedded in the
triplets. The next two experiments tested these possibilities.

Experiment 2

Experiment 2 tested whether participants could extract pair-
based structures from scenes that were, in all respects other than
their underlying generative structure, identical to those used in
Experiment 1. If they could, then it would rule out the hypothesis
that the failure in Experiment 1 to extract embedded pairs was
merely the result of a higher interference of the test items with
memory traces of shape pairs.

Method

Participants. Twenty new naive undergraduates from the University of
Rochester participated in Experiment 1.

Stimuli, design, and procedure. Experiment 2 was identical to Exper-
iment 1 in all respects except for the structure of the familiarization scenes
and the specific pair and triplet tests. In Experiment 2, six base pairs were
used instead of four base triplets for generating the scenes. Each scene was
based on one scene of Experiment 1, so that the empty and the filled grids
in the scene used in Experiment 2, and in the corresponding scene in
Experiment 1, were the same. In other words, the silhouette of the six-
shape scenes defined by the filled grid positions was identical to the
original scenes in Experiment 1. However, the scenes of Experiment 2
were composed of three of the six base pairs rather than two of the triplets
as in Experiment 1. Thus, for a naive observer, the scenes appeared to be
exactly the same in the two experiments; only the higher order structures
were different. Each base pair and each single element appeared the same
number of times across the scenes presented during familiarization.
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The critical test trials in Experiment 2 consisted of pairs of shapes
because the coherent structure in the scenes was pair based. The pair test
trials had exactly the same silhouette as in Experiment 1 but used the base
pairs of Experiment 2 rather than random or embedded pairs. The single-
shape and quadruple test trials were identical in Experiments 1 and 2 and
served as foils to mask our interest in the pair test trials. The triplet test
trials, which were relevant in Experiment 1, were no longer relevant in
Experiment 2 and had the same silhouette as the triplet trials in Experiment
1 but they were foil trials with random structures.

Results and Discussion

Participants in all trials with dummy test elements showed
chance performance. Figure 4 shows the pair results of Experiment
2. Although the number of potential pairs and triplets and their
exact absolute and relative positions during practice were identical
to those in Experiment 1, the participants had no difficulty choos-
ing the base pairs over the random pairs, #(19) = 4.25, p < .0005,
under the same test conditions as in Experiment 1. This finding
excludes the possibility that the results of Experiment 1 were due
to a higher interference of the test items with memory traces of
shape pairs.

Experiment 3

Experiment 3 served to further investigate the results from
Experiment 1. Although Experiment 2 showed that participants
could learn a pair-based structure when it was the only statistical
structure embedded in the six-element scenes, it is possible that
scenes containing two different levels of statistical structure might
prevent individuals from extracting both. Such a possibility would
explain why participants in Experiment 1 showed a difference in
their ability to extract triplet-based structures versus pair-based
structures, independent of the question of embeddedness. Experi-
ment 3 was designed to determine whether participants were able
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Figure 4. The result of Experiment 2. Participants preferred base pairs over random pairs. Error bars

represent = 1 SEM.
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to extract both pair-based and triplet-based structures in parallel
when the tested pairs were not parts of the tested triplets.

Method

Participants. Twenty new naive undergraduates from the University of
Rochester participated in Experiment 3.

Stimuli, design, and procedure. Experiment 3 was identical to Exper-
iment 1 in all respects except that the structure of the familiarization scenes
contained not only base triplets but also nonembedded base pairs. The 12
shapes were grouped into three base pairs and two base triplets. Half of the
familiarization scenes consisted of the two base triplets, and the other half
consisted of the three base pairs. The silhouettes of the scenes as well as the
silhouettes of the triplets and pairs were the same as in the previous two
experiments, and each triplet, pair, and single shape appeared an equal
number of times during the familiarization phase. During familiarization,
the triplet- and pair-based scenes were intermixed and presented in random
order, and participants were given no indication as to what type of scene
was being presented.

The dummy single shape and quadruple test trials were identical to those
in Experiments 1 and 2. The pair and triplet tests of Experiment 3 had
exactly the same silhouette as in Experiments 1 and 2, but the actual shapes
were the base pairs of the current experiment compared with random pairs
and the base triplets of the current experiment compared with random
triplets.

Results and Discussion

Once again, participants in all trials with dummy test elements
showed no significant deviation from chance performance. Figure
5 shows the pair and triplet results of Experiment 3. Both base
pairs and base triplets were chosen significantly more often than
the random pairs and random triplets, #(19) = 4.22, p < .0005, and
(19 = 3.47, p < .005, for pairs and triplets, respectively. These
results demonstrate that when the most significant structures
within a scene consist of both triplets and pairs, participants have
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no difficulty becoming sensitive to features of different complex-
ities (quantified by the number of elements included) in parallel.
These findings rule out the possibility that participants in Exper-
iment 1 failed on the pair-based test trials because of a scale effect
(i.e., because they could not simultaneously extract both pair-based
and triplet-based structures from the scenes).

Experiment 4

The results of Experiments 2 and 3 excluded the simplest
explanations of the findings of Experiment 1 based on generic
biases, either in the test phase or in the familiarization phase, to
attend to triplets over pairs. Thus, the most parsimonious interpre-
tation of the results of Experiment 1 is that when a representation
of a complex visual feature (the base triplet) that contains a
number of embedded simpler features (any pair within the triplet)
is being formed during observational learning, separate represen-
tations of the embedded features are suppressed. A corollary of this
interpretation is that whenever two features of the same complex-
ity are present in a scene, the one embedded in a larger feature
must be represented to a lesser degree than the other, which is not
included in a larger feature. Experiment 4 tested this corollary
directly.

Method

Participants. Twenty naive undergraduates from the University of
Rochester, who were paid $10 per session for their participation, served as
participants.

Stimuli and design. The same 12 arbitrary complex black shapes on a
white background and the same 5 X 5 grid were used in Experiment 4 as
in all the previous experiments. Unknown to the participants, the 12 shapes
were organized into two base quadruples, or base quads, and two base pairs
(see Figure 6). As before, the specific assignment of the 12 shapes to base
quads and base pairs was randomized across participants.

Chance

o1 I

Pairs

Triplets

Figure 5. The results of Experiment 3. Participants could reliably select base pairs and base triplets over
random shape combinations when scenes composed from only triplets or only pairs were randomly intermixed
during the familiarization phase. Error bars represent = 1 SEM.
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Figure 6. The base quadruples and base pairs of Experiment 4 and a
typical scene.

A total of 120 different scenes were generated by randomly positioning
one of the two base pairs and one of the two base quads on the grid so that
at least two elements of the quad would have an element from the base pair
in a right or left neighboring cell of the grid. Each shape of the 12 elements,
each base pair, and each base quad appeared an equal number of times
across the 120 scenes. Just as in Experiment 1, shape pairs with neighbor-
ing elements that were contained in a base quad are referred to as embed-
ded pairs.

Procedure. The familiarization phase in Experiment 4 was divided into
two parts, each part followed by a test. During each familiarization phase,
participants saw each of the 120 possible scenes only once (in random
order) in a 6-min movie, with a scene duration of 2 s and a 1-s pause
between scenes. Similar to all previous experiments, participants were not
given any specific task other than paying attention to the scenes. There was
a 3-min break between each familiarization phase and its corresponding
test phase.

After each of the two familiarization phases, participants completed a
temporal 2AFC test phase, which was slightly different from the tests in the
previous experiments. During the test, participants saw 26 trials, which
were only pair trials or quadruple trials in random order. In the quad trials,
base quads (one of the two clusters on the left side in Figure 6) were
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compared with a random arrangement of four shapes. In the pair trials, base
pairs were compared with pairs of shapes that never appeared next to each
other during the familiarization phase. There were two types of base pairs
compared with random pairs. The first type consisted of pairs embedded
within the base quads (i.e., two neighboring shapes from a base quadruple
in Figure 6). The second type consisted of the base pairs of the scenes that
were independent from the base quads and were not embedded in any
higher order structure (i.e., one of the two pairs on the right column in
Figure 6). Because the base pairs in this experiment were always diago-
nally arranged for better mixing with the quadruples, all test pairs, coherent
or random, were arranged diagonally, and the main directions of the
diagonals were counterbalanced. Each test pair or quadruple was posi-
tioned in the middle of the grid. After completing the first test phase, the
participants were exposed to the second half of the familiarization phase
and then completed the same temporal 2AFC test phase a second time. The
order of the test trials was randomized individually in the first and the
second test sessions.

Results and Discussion

Figure 7 shows the results of Experiment 4. The pattern of
results in the two test phases was very similar after 6 and 12 min
of familiarization, demonstrating that the test phase after the first
round of practice did not bias the participants to attend more to the
statistical structures of interest (the pairs and the quads). Confirm-
ing this, a 2 (round) X 3 (test type) analysis of variance (ANOVA)
revealed no main effect for round, F(1, 19) = 0.58, p = 453, > =
0.03. In contrast, there was a main effect of test type, F(2, 38) =
11.82, p < .0001, n2 = (.38, with no interaction, F(2, 38) = 0.33,
p = 717, n* = 0.02. Even after only 6 min of passive viewing,
participants showed a significant preference for extracting the
familiar structure of the base quads over random quads and the
nonembedded pairs over random pairs, #(19) = 4.16, p < .0005,
and 7#(19 = 3.56, p < .005, for quads and nonembedded pairs,
respectively. However, participants failed to distinguish the em-
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Figure 7. The results of Experiment 4. Both base quadruples and base pairs were preferred significantly over
random combinations of elements. However, participants were unable to distinguish pairs embedded in the
quadruples over random pairs. This pattern of results did not change after doubling the duration of the

familiarization phase. Error bars represent = 1 SEM.
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bedded pairs from random pairs, #(19) = 0.78, p = .444, even
though these embedded pairs were seen as often as the nonembed-
ded pairs and the quads that included these embedded pairs were
easily discriminated from random quads. The difference in perfor-
mance between the quads and the pairs embedded in the quads, as
well as between the embedded pairs and the base pairs, was
significant, #(19) = 2.97, p < .01, and #(19 = 2.31, p < .05, for
quads versus embedded pairs and for nonembedded versus embed-
ded pairs, respectively.

An additional 6 min of familiarization improved the partici-
pants’ performance, albeit not significantly, on both the tests of
base quads (5.25% increase) and base pairs (3.75% increase).
However, additional familiarization did not raise the participants’
performance for the embedded pairs over random pairs to above-
chance levels, and in fact it decreased the participants’ perfor-
mance slightly (—0.625%). These findings confirm the initial
conclusion drawn from Experiment 1 with pairs embedded in
triplets and supported by the controls in Experiments 2 and 3. That
is, the representations of complex features that develop implicitly
during passive observational learning are biased to highlight
higher order features and to suppress embedded features that are a
part of and redundant with a larger, more complex feature.

Experiment 5

In the four preceding embedded experiments, we found an
interaction between how well features are learned and how they
are linked together by being present in the same coherent visual
structure (what we refer to as a chunk). The representation of
features embedded in more complex higher order features was
suppressed, as demonstrated by participants’ apparent inability to
discriminate them from random structures in 2AFC tasks. How-
ever, it is not clear what determines the size and boundaries of a
chunk. In the preceding embedded experiments, element co-
occurrence and predictability always covaried. Either or both of
these two statistics could affect the process of chunking.

In previous research with multielement scenes (Fiser & Aslin,
2001), we showed that when element co-occurrence (relative fre-
quency) and element predictability (conditional probability) co-
vary, individuals tend to remember element combinations (higher
order features) with high co-occurrence and high predictability.
The same study also demonstrated that when element co-
occurrence does not differ between two pairs, individuals can rely
on the conditional probabilities (predictability) of pairs exclu-
sively, and they preferentially encode pairs with high predictabil-
ity. In these studies, when element co-occurrence of the tested
pairs was equated, the tested features with low and high predict-
ability had never appeared in the same scene during learning.
Thus, individuals collected information independently during the
familiarization phase about the two types of features that they were
asked to compare in the test phase.

In Experiment 5, participants viewed scenes with different em-
bedded structures that had different predictability regardless of
their co-occurrence frequency. These scenes approximate real-
world situations better than scenes in the previous embedded
experiments. Because feature co-occurrence can be separated from
predictability only by adjusting the appearance frequency of cer-
tain individual elements within the feature, the experimental ques-

tion that can be explored with such scenes is as follows: What
determines the manner in which complex visual input is chunked
into new features during the observational learning process? Is it
the appearance frequency of the individual elements in the scene
(i.e., how often we see them), or their predictive power (i.e., how
much we can rely on them in predicting the appearance of some
other elements) that constrains statistical learning? Experiment 5
investigated this question.

Method

Participants.  Thirty naive undergraduates from the University of
Rochester, who were paid $10 per session for their participation, served as
the participants.

Stimuli and design. The same 12 arbitrary complex black shapes on a
white background and the same 5 X 5 grid were used in Experiment 5 as
in all the previous experiments. Unknown to the participants, the 12 shapes
were organized into two base sextuples (see Figure 8). As before, the
specific assignment of the 12 shapes to the base sextuples was randomized
across participants. In addition to the coherent sextuple structures, two
shapes from each sextuple were selected to serve as an additional noise
element in creating seven-element scenes when combined with the other
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Figure 8. The stimuli of Experiment 5. (A) The scenes of Experiment 5
were generated by using one of the sextuples and one noise element from
the other sextuple. The two possible noise elements in each sextuple are
marked with a gray background for illustrative purposes only. (B) Because
of the choice of the sextuples’ outline shape and the noise elements, both
large structures (sextuples) contained strong pairs with high predictability
and low appearance frequency and weak pairs with low predictability and
high appearance frequency. The orientation and position of these elements
were completely balanced across the scenes.

Weak pairs
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sextuple. A total of 184 different scenes were composed of seven shape
elements by putting one of the sextuples in random position onto the 5 X
5 grid and adding one of the two noise elements from the other sextuple so
that the noise element was adjacent to at least one element of the sextuple
(see Figure 8).

This method of scene generation resulted in the four noise elements
appearing 1.5 times as often as all the other shapes across the entire set of
scenes. In addition, all the pair-based co-occurrence frequencies, and
therefore all the joint probabilities, within each sextuple were identical.
Shapes within pairs of the sextuples that did not involve any noise ele-
ments, referred to as strong pairs, had higher (in fact, perfect) predictability
(CPs = 1.0), because one element of the pair predicted perfectly the
appearance of the other element. In contrast, pairs of shapes within the
sextuples that did contain noise elements, called weak pairs, had lower
(CPs = 0.66) predictability, because the noise elements could appear in
different pairings one third of the time. Thus, strong pairs had high
predictability but lower element appearance, whereas weak pairs had lower
predictability but higher element appearance (see Figure 8B). Therefore,
any difference in participants’ performance on a test comparing strong and
weak pairs would answer the question of whether predictability or appear-
ance frequency determines chunking. The selection of the noise elements
was such that horizontal and vertical arrangements and relative position of
the tested strong and weak pairs within the sextuples were balanced.

Procedure. During familiarization, participants saw each of the 184
possible scenes only once, in random order, in a 9-min movie, with a scene
duration of 2 s and a 1-s pause between scenes. Participants were not given
any specific task, and there was a 3-min break between the familiarization
and the test phase.

After the familiarization phase, participants completed a temporal 2AFC
test phase very similar to the previous embedded tests, with trials using
single elements, pairs, and quadruples but not triplets. In Experiment 5,
there were no dummy trials without a correct answer. In the single trials,
the four high-frequency noise elements were compared with other shapes
that had appeared with lower frequency. In the quadruple trials, embedded
quadruples of the two sextuples were compared with random quadruples.
The key test trials were the ones in which a strong or a weak pair was
compared with a random shape pair, consisting of shapes that never
appeared next to each other during the familiarization phase. Because the
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main question of interest was the difference between weak and strong pairs,
the test phase was split into two halves: First, the trials with pairs were run,
and then the trials with quadruples and single elements were conducted.

Results and Discussion

Although scenes composed of a sextuple and a single noise
element might seem to be easily decomposed into its two constit-
uents, most of the participants did not report during the posttest
debriefing that they had became aware of the true structure of the
scenes during the experiment. Figure 9 shows the results of Ex-
periment 5. A one-way ANOVA with four levels revealed a main
effect of test type, F(3, 87) = 5.63, p < .0015, n*> = 0.16. In all
four types of tests, participants’ performance deviated significantly
from chance level, #29) = 2.73, p < .011, #(29) = 6.84, p <
.0001, #29) = 443, p < .0001, #29) = 5.64, p < .0001, for
singles, strong pairs, weak pairs, and quads, respectively. That is,
participants performed significantly above chance in identifying
which of the individual shapes, and also which pair or quad
structures, were shown more frequently during the familiarization
phase. However, there were significant differences in performance
between the different types of test stimuli. Strong pairs and qua-
druples embedded in the sextuples were identified correctly
equally well, #29) = 0.32, p = .751. In contrast, weak pairs were
identified significantly less often than either strong pairs or qua-
druples, #(29) = 2.25, p < .05, 129 = 2.50, p < .05, for strong
versus weak pairs and quadruples versus weak pairs, respectively.
This result shows that, although weak and strong pairs appeared
the same number of times, both in the same positions within the
grids and within the larger structure of sextuples, and although
elements of the weak pairs appeared more often than elements of
the strong pairs, strong pairs were encoded better and remembered
more because of the higher predictability of their elements. A
corollary of this finding is that weak pairs serve as the break points
for dividing a large coherent structure into chunks.
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Figure 9. The results of Experiment 5. In all four tests, participants chose significantly more often the base
structures over random structures or over the single element with the higher appearance frequency. However, the
weak pairs were selected significantly less frequently than the strong pairs. Error bars represent = 1 SEM.
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General Discussion

In five experiments, we investigated a key constraint, embed-
dedness, that could enable human adults to extract the statistics of
visual information to form memories of new higher order features
from complex scenes without suffering from the curse of dimen-
sionality. Overall, we found that, although humans rely heavily on
visual statistics, including both joint and conditional probabilities
among feature elements, their performance deviates in a number of
ways from simply extracting different image statistics indepen-
dently and forming representations based on the most prominent
statistics in the set of scenes.

We found that humans extract independent parts—highly co-
herent subsets of elements— of different levels of complexity from
the scene in parallel and without an explicit task (Experiments
1-3). However, parts of the same complexity were remembered to
a different degree depending on whether or not they were embed-
ded in a larger, more complex cluster of elements: Features em-
bedded in larger features were represented to a lesser degree
(Experiment 4). This implies that not all the embedded features
that are parts of a larger whole are explicitly represented once a
representation of the whole has been consolidated. We call this
phenomenon the embeddedness constraint of statistical learning. In
the final experiment, we found that embedded parts with strong
predictability are encoded significantly better than embedded parts
with less predictability, even if the elements of the parts with less
predictability appeared more often across all the scenes presented
during the familiarization phase. A consequence of this finding, we
argue, is that when a large, complex feature consists of elements
with unequal predictive power, the representation of the large
feature is broken into parts, or chunks, at the “fault lines” between
elements that have low predictability with each other. We propose
that this is a statistical definition of chunking that is consistent with
and complements the classical definition that is based on the
functional limits of short-term memory (Chase & Simon, 1973;
Ericsson, Chase, & Faloon, 1980).

Statistical Learning With the Constraint of Embeddedness

Although our use of a 2AFC posttest did not allow us to
directly reveal the process of learning, we propose that our
postfamiliarization results are indicative of how the visual
system develops new higher order features of initially unfamil-
iar inputs. We suggest that the embeddedness constraint reduces
the overall number of features that are required to represent the
full range of structures in scenes by reducing the complexity of
the representation of the large coherent structures. By analogy,
consider an example from the domain of text with the task of
identifying words that are built up from lower level embedded
features of letters, letter pairs, and letter combinations of dif-
ferent length. For the sake of clarity, we allow for only two
types of features: (a) adjacent letter pairs and (b) nonadjacent
letter pairs with a “wild card” between them that can be any
letter. Assume that the new word “redundancy” appears for the
first time in the written corpus. In our recognition system, there
are 17 potential pair features embedded in the larger structure of
the word redundancy that would be activated by the word, and
all these features should be considered for representing the

word and to learn any new higher order features that involve the
word. Nevertheless, to represent the unique letter string redun-
dancy in a word-recognition task involving a large number of
other words, only four of these pairs may be sufficient (e.g., re,
d_n, a_c, cy). As new words are added to the corpus of text,
some of the other 13 features might be included in a bootstrap-
ping manner to represent redundancy as a unique string because
of the need for greater specificity to distinguish it from other
words. However, if there are no other words in the corpus that
also happen to contain these four pairs, then this small feature
set may suffice to provide a unique representation of the word
redundancy for all the purposes of the system. Also, any addi-
tional learning of new higher level representations will act only
on this limited sufficient set of features rather than on the entire
range of all possible features of the word. The key point is that,
in general, the vast majority of the potential features (13 of the
17) are not used to represent this higher order structure (the
word redundancy), and because the limited representation is
sufficient for all the required tasks, it may not even be evident
to the representational system that the structure of the word is
only partially specified. Consequently, if there is a reliable
mechanism that is biased to represent the largest chunks in the
input in a minimally sufficient manner, rather than using a full
representation of all possible features, this constraint can elim-
inate the curse of dimensionality.

Suppressing the internal representation of all unnecessary or
excess features is not only advantageous from the point of view of
reducing complexity, but it is also naturally implemented in an
adaptive, competitive neural network that is sensitive to statistical
regularities. For example, neural network simulations that learn
new higher order complex features from multielement scenes by
competitive learning using conditional probability statistics inher-
ently suppress the embedded structures while developing repre-
sentations of the largest coherent parts in the scene (Dayan &
Zemel, 1995). Similar competitive learning mechanisms were hy-
pothesized to underlie visual feature formation in the cortex
(Bienenstock, Cooper, & Munro, 1982).

How should the minimally sufficient set of features of a new,
complex visual structure be selected? On the basis of the results of
Experiment 5, we suggest a mechanism by which the visual system
seems to achieve this less redundant representation. According to
this mechanism, when the visual system faces complex scenes
composed of elements with uneven appearance frequencies and
predictive power, it extracts new complex features based on a
combination of preexisting partial representations with the highest
predictive power (high CPs). The largest combinations of elements
with high predictability serve as coherent chunks, each of which
forms a single, new higher level feature, whereas combinations of
elements with low predictability serve as natural breakpoints to
separate the whole scene into its parts. Returning to our analogy
with the word redundancy, if the previously learned corpus of
words made it evident that the _ncy pattern is a highly typical letter
combination across many words, but the letter before the “n” is
highly variable, then the system would break the representation
before the letter n and use the single feature of n_y to represent the
chunk, thereby neglecting the explicit representation of both the nc
and the ¢y embedded features.
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It is important to emphasize that, although this scheme reduces
redundancy, it is very different from the models of early vision, in
which redundancy reduction is pursued without allowing the loss
of input information even when additional constraints, such as
sparseness, are applied (Bell & Sejnowski, 1997; Olshausen &
Field, 1996). Quite the contrary, the chunking model deliberately
neglects input information by selectively coding only a part of the
incoming information while searching for the minimal code that is
sufficient for interpreting the input. Naturally, this scheme requires
an incremental bootstrapping mechanism of feature learning, so
that when the minimal code proves insufficient it could get
expanded.

Because the input to the statistical learning mechanism is now
constrained by the predictability power of lower level descriptors,
when predictability is fairly uniform across elements, the emerging
new higher order features will generate a holistic or view-based
representation such that the features used to represent the scene are
not restricted to a subregion of the scene. On the other hand, when
predictability varies considerably across subregions of the scene,
thereby creating a number of breakpoints, a structural description
or part-based set of new complex features is more likely to de-
velop. In the same way, predictability can be the basis of the
emergence of individual objects from the scene (Fiser & Aslin,
2001).

How would the visual system know the predictive power of any
subfeature within a new potential feature in an unknown scene to
select the ones with the highest power to form chunks and the
minimally sufficient set of features? This is where incrementality
of the learning process becomes important. Because the initial
representation of the unknown scene uses previously developed
features, the predictability of those subfeatures must have been
assessed earlier during the learning process in some different
context. The simplest scheme is to rely, at least initially, on those
subfeatures with the highest predictive power in the previous
context to form new higher level representations. These highly
predictive subfeatures are not determined by how prominent they
are in the scene (i.e., by their relative frequency of occurrence) but
by how much predictive power they have for describing other
elements within the scene or the scene itself and how easy they are
to extract (Jacobs, 2003). Specific examples of such prominent
subfeatures include not only those that are given by built-in or
early developed midlevel mechanisms (e.g., luminance and chro-
matic contrast, T- and Y-junctions, contour proximity, and other
Gestalt cues; see Pomerantz & Kubovy, 1986) but also more
complex subfeatures that are combined to form higher level fea-
tures by a constrained statistical learning process.

However, most of the subfeatures clearly do not have one single
general predictability value that is relevant in all cases. Take, for
example, the standard and the fold-out versions of mobile phones.
In the standard case, the shape, position, and lighting conditions of
the keypad section are highly predictive of the same attributes of
the display section; thus, a single chunk could be used to represent
both sections, whereas with the newer fold-out phones this is not
the case. How can our scheme handle the fact that the same feature
in different contexts might have very different predictabilities?
Initially, the subfeature within the wrong context will still be used
for forming higher order features (e.g., the overall shape of the
phone when both the display and the keypad are visible) according

to their assumed predictability. However, when the resulting
higher order features turn out not to be useful (e.g., during a visual
search for the phone in a cluttered environment), the final repre-
sentation will eventually reject (or uncouple) the features based on
the subfeature with weak predictive power, and the representation
of the subfeature will be suppressed within this context. Therefore,
a subfeature can be highly significant and heavily used in one
context and completely absent from the representation in a differ-
ent context.

The Relation Between Natural Scene Perception and
Observing Multielement Displays

As described early in this article, we purposely created displays
that lack real-world features beyond the individual shapes them-
selves, acknowledging that the adult visual system already has a
large built-in and developed set of detectors for extracting depen-
dencies among pixels and features of various complexity. By
choosing our stimuli, we tried to control these dependencies in two
ways. First, we acknowledge that lower level dependencies oper-
ating at the level of the pixels produce a description of the
individual shapes. So the description of the individual shapes does
involve basic grouping, similarity, and other principles common to
the visual system. However, this level of description at the pixel
level is completely detached from the higher levels in our stimuli.
There is no applicable link between the pixel level and the depen-
dencies that operate at the level of shape combinations regardless
of which dependencies were used for generating the description of
the individual shapes. The second level of control we used was to
make sure that, at the level of the shape sets, there was no obvious
way to use any of the preexisting pixel-level dependencies. The
shapes were arranged in a standard grid with no variation in
intershape distance, and each participant received an individual
assignment of the shapes so that none of the shape base pairs could
be more salient than others because of some accidental arrange-
ments. Because our study focuses on the level of shape combina-
tions, we argue that the current setup allows us to conduct this
investigation in the most controlled way.

The main proposition of the current study is that the type of
learning we measure in our paradigm is purely statistical in nature
and, therefore, applicable on all levels of the visual system, from
very basic contrast variations to high-level co-occurrences of ob-
jects and events. This is because the learning is operating on
internal representations; therefore, it is irrelevant whether these
representations represent pixels, blobs, or events. The traditional
research on scene perception is heavily related to semantic mean-
ings, associations between objects in the scene, and, in general,
high-level cognitive functions. We use a much lower level oper-
ational concept of scene perception that is strongly influenced by
infant research. For us, a scene is a complex set of elements in
which many elements are highly visible, but most of them do not
have categorical meaning or known relations to each other. Thus,
infants could see blobs, edges, color patches, or changes in motion,
and, based on these already available descriptions, they may de-
velop a more precise understanding of which of these bits of
information go together. This notion of scene perception is broad
enough to encompass the visual problem for a 2-month-old as well
as that for an adult, who naturally uses much more cognitive
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(top-down) knowledge but, according to our view, the same prin-
ciples. From this point of view, a scene is any visual input that has
high complexity and unknown underlying structure. To validate
this perspective, the next necessary step is to connect our results
obtained with abstract shape-based inputs to the domain of low-
level natural visual inputs and to demonstrate their applicability in
real-world environments.

Related Work

Our model of constrained statistical learning is a direct descen-
dant of Bayesian approaches (Knill, Kersten, & Yuille, 1996) and
can be naturally formulated within a Bayesian framework (see the
Appendix). Although there are studies that use the Bayesian ap-
proach for unsupervised learning (Dayan, Hinton, Neil, & Zemel,
1995; Frey, 1998), they must handle two basic problems confront-
ing the full inference method of the pure Bayesian approach. First,
they need to be able to scale up to real-sized problems without
calculating all the possible likelihood functions of the task, which
is impractical. This is essentially a restatement of the “curse of
dimensionality” problem. Second, they need to avoid ad hoc
narrowly defined goals as a cost function to their ideal observer
model, thereby essentially custom fitting the learning model by
using a complex model of the entire visual system (in fact, the
entire brain). One approach to circumventing both shortcomings of
the full inference method combines the Bayesian formulation of an
ideal observer with the imitation of natural selection by a Bayesian
formalization of evolutionary programming (Geisler & Diehl,
2002). Traditionally, developing an ideal observer model required
a mapping of the entire space of all possible solutions to the
problem. So learning the best features for visual recognition re-
quired a complete mapping of all situations in which that feature
(and the other potential features) could be used and selecting the
most effective set of the features. In contrast, natural selection does
not map the entire space but changes the set of features in small
steps, and with each step it improves the efficiency of the feature
set incrementally. By combining the two methods, Geisler and
Diehl (2002) posed constraints on the general process of finding
the optimal feature set by introducing a general cost function
through natural selection that is intuitively reasonable: maximum
fitness of the species. The virtue of evolutionary programming in
this framework is that it does not require a complete model of the
entire problem space to search for a (locally) optimal solution.
Conceptually, this approach is close to ours (cf. Mel & Fiser,
2000), because both of them explore the virtues of the constrained
statistical approach to visual information processing, and both rely
on the continuous feedback provided by the environment to im-
prove the visual representation. The difference is that Geisler and
Diehl (2002) provide a formal framework based on Bayesian
statistical decision theory, whereas the current work explores em-
pirically a set of specific constraints or shortcuts that seem to
dominate visual feature development and thus should be incorpo-
rated in the formal framework.

Our findings are also related to the question of how humans
form and store memory traces and retrieve those traces for recall,
recognition, and decision making. These questions span a huge
literature (Raaijmakers & Shiffrin, 1992; Ratcliff & McKoon,
2000; Squire, 1992; Yonelinas, 2002). As in these studies, the

current work tests familiarity of previously seen patterns. How-
ever, in contrast to most of these studies of human memory, we
focus on how parts of previously seen scenes are remembered.
Although there were previous studies exploring the question of
how humans remember parts of scenes or objects (e.g., Biederman,
1987), our work is, to our knowledge, the first to allow precise
control over the statistics of the test scenes. In addition, because of
our design (complete balance of statistical and semantic signifi-
cance of the elements, high repetitiveness of the elements, uniform
layout), our results cannot be explained by previous (prefamiliar-
ization) experience and memories, episodic memory, or saliency.
Therefore, our results can be more readily linked to the formation
of general internal representations than to the ability to store
particular memory traces. In other words, our work is more closely
related to the particular problem of how episodic traces get trans-
formed into knowledge representations and how relevant struc-
tures (i.e., features) get selected from visual experience and rep-
resented in memory in an efficient (i.e., nonredundant) manner.

These questions are also related to studies that focus on higher
level aspects of feature learning, including the task dependency of
feature learning for categorization (Goldstone, 2000; Schyns,
Goldstone, & Thibaut, 1998) and aspects of causal learning
(Gopnik et al., 2004; Steyvers, Tenenbaum, Wagenmakers, &
Blum, 2003). Our approach shares the emphasis on the importance
of constraints and the general probabilistic framework with these
other approaches, but it differs in focusing on the basic constraints
on the development of lower level perceptual features and attempts
to minimize the effect of task dependency. Therefore, our exper-
iments investigate a complementary aspect of human learning to
those studied in the lines of research just presented. It is clear that,
had we given the participants different kinds of tasks, their per-
formance would have been influenced substantially. For example,
if we had asked the participants to look for pair relations in
Experiment 1, no doubt the results would have been just the
opposite from what we reported. However, our paradigm explored
the basic mechanism of learning in which the effect of the task was
as minimal as possible, acknowledging that laying on top of this
basic mechanism are various modulations in performance resulting
from particular tasks. Goldstone (2000) and Schyns et al. (1998)
investigated the scope and strength of such modulating task ef-
fects, whereas we asked whether there was any basic mechanism
that would provide the foundation of learning when little or no
cognitive (top-down) factors are present. One could argue that
such a situation never occurs in the real world because our mind is
always controlled one way or the other by some task. However, if
this were true, our experimental paradigm should have led to a null
result because different cognitive states should promote different
preferences for pairs and triplets, and this should cancel out any
bias across a large number of participants. The fact that we
obtained a clear significant result suggests that our assumption of
a basic mechanism that exists independent of the influence of the
task is correct.

Finally, a number of studies investigate more directly what the
possible representations for object recognition are (Fukushima,
1980; Hummel & Biederman, 1992; Mel, 1997; Oram & Perrett,
1994; Riesenhuber & Poggio, 2000) and how to acquire them
(Dayan et al., 1995; Poggio & Edelman, 1990; Wersing & Korner,
2003). The dominant issue under heavy debate on the representa-
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tional level has been whether the visual system uses a structural-
description type of representation with a limited-size three-
dimensional “alphabet” based on nonaccidental features and their
spatial relations (Biederman, 1987; Biederman & Gerhardstein,
1993) or a view-based snapshot representation (Biilthoff & Edel-
man, 1992; Biilthoff, Edelman, & Tarr, 1995). Accumulating ev-
idence from human studies (Foster & Gilson, 2002; Vuilleumier,
Henson, Driver, & Dolan, 2002) and awake monkey experiments
(Logothetis & Sheinberg, 1996) has led to a consensus that the
brain probably uses both (Tarr & Biilthoff, 1998), and our frame-
work readily accommodates this view (Fiser & Aslin, 2001). In
terms of learning visual features, all proposed learning methods of
both basic and higher level features (Hoyer & Hyvarinen, 2002;
Karklin & Lewicki, 2003) must rely on the detection of conditional
probabilities between parts of the input image, and our results
provide the critically necessary experimental evidence that humans
automatically extract these statistical measures.

Conclusions

Conducting a number of psychophysical experiments, we found
that humans use a particular implicit strategy, termed the embed-
dedness constraint, that dominates the formation of internal mem-
ories of fragments that compose unfamiliar hierarchically orga-
nized scenes. We argued that this constraint helps to avoid the
curse of dimensionality in visual feature learning by limiting the
input space and the complexity of the available structure for
learning. In addition, it also suggests a natural way of partitioning
the visual input into chunks based on the statistical coherence
between constituents of the input. We propose that, with this and
similar constraints, a statistical learning approach offers a unified
bootstrapping framework for investigating the formation of inter-
nal representations in vision. Other specific constraints guiding the
formation of internal representations at various levels of this
bootstrapping process should be the topic of further research.
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Appendix

A Bayesian Framework for Statistical Learning

A typical probabilistic approach to perceptual phenomena is to have a
Bayesian formulation that specifies the information in images that allows
the observer to perceive the environment (Knill et al., 1996). This formal-
ism has been used to define the available information for an ideal observer
to solve a particular visual task and seems to be suitable for analyzing our
observational learning paradigm. Briefly, in a classical Bayesian formula-
tion, each scene S has a prior probability function p(S), which represents
the statistical dependencies between scene features. The observer’s goal is
to identify S based on a perceived image /. The S scene gives rise to the /
image according to an image formation model 7, with some additional
noise N generated during the image formation: I = m(S) + N. The a
posteriori conditional distribution p(SII) specifies the information that the
image / provides about the scene S, and thus this is the quantity the
observer seeks to obtain for successfully recognizing the input. According
to Bayes’s rule, this can be done by

~ p(1S)*p(S)
P ="

where p(I) is just a normalizing factor that represents the probability that
image [ occurs. Thus, in essence, the two terms of the numerator represent
the factors that determine p(SI/). The first, p(l1S), is called the likelihood
function, and it specifies the relative probabilities that different images
appear for a given S. This term incorporates the effects of the image
formation model 7 and the noise N. The second term, p(S), is the prior
distribution of scene configurations. This term collects effects of scene

properties, the structure of the scenes, such as rigidity or smoothness, or the
co-occurrences of elements.

In a real-world situation, both terms are important, although the relative
importance might vary from case to case, and different formulations of the
problem of perception emphasize one term or the other as being more
important. In the classical signal-processing framework, in which the task
is to identify the noise-corrupted image, the likelihood function is the
critical term, and the p(S) prior is typically substituted with a constant
function assuming no additional relevant information attached to it. In
contrast, the observational learning paradigm posits that noise and ambig-
uous image formation are a lesser problem, and the real challenge is in
understanding the scene structure that is represented by p(S).

Our observational learning task demonstrates in a nutshell how acquiring
the conditional probabilities between elements interacts with this Bayesian
framework. Because the displays in our task are composed of multiple
shapes, identifying p(S) means knowing the probability of appearance for
each shape (12) at each location (5 * 5), which equals 300 individual
entries for the distribution p(S). Because of the combinatorial nature of the
scenes with 12 possible elements, 25 possible positions, and 6 shapes in
each scene, it also means that the learning method needs to consider N =
(121/(6! * 6!)) * (25!/19!) possible individual scenes, which totals more
than 1.2 * 10" scenes in this small toy problem. One can assume identical
probabilities for each of the shape entries at each position, but this does not
reflect the true structure of the scene and leads to an inferior encoding and
representation of the underlying structure. When the base-pair structures
are noticed because of the conditional probabilities between the elements
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of the base pairs, only six base pairs need to be encoded, and they can
appear only in 20 or 16 positions (depending on the type of base pair)
giving only 112 possible entries and approximately 6,000 possible scenes.
The reason for this large reduction in entries and possible scenes is that
now only a restricted combination of elements can make up any of the
scenes because of the interaction between the higher order features (how
pairs can be put next to each other) and the even smaller number of

permissible scenes. Thus, by identifying the higher order features through
the conditional probabilities, the complexity of the problem of perceiving
and recognizing the scenes is substantially simplified.

Received January 26, 2005
Revision received June 22, 2005
Accepted June 23, 2005 =

1892, Houston, TX 77251.

with each journal title).

editors for consideration in 2007 volumes.

New Editors Appointed, 2007-2012

The Publications and Communications (P&C) Board of the American Psychological Association
announces the appointment of three new editors for 6-year terms beginning in 2007. As of January
1, 2006, manuscripts should be directed as follows:

e Journal of Experimental Psychology: Learning, Memory, and Cognition (www.apa.org/journals/
xlm.html), Randi C. Martin, PhD, Department of Psychology, MS-25, Rice University, P.O. Box

Professional Psychology: Research and Practice (www.apa.org/journals/pro.html), Michael C.
Roberts, PhD, 2009 Dole Human Development Center, Clinical Child Psychology Program,
Department of Applied Behavioral Science, Department of Psychology, 1000 Sunnyside Avenue,
The University of Kansas, Lawrence, KS 66045.

Psychology, Public Policy, and Law (www.apa.org/journals/law.html), Steven Penrod, PhD,
John Jay College of Criminal Justice, 445 West 59th Street N2131, New York, NY 10019-1199.

Electronic manuscript submission. As of January 1, 2006, manuscripts should be submitted
electronically through the journal’s Manuscript Submission Portal (see the Web site listed above

Manuscript submission patterns make the precise date of completion of the 2006 volumes uncertain.
Current editors, Michael E. J. Masson, PhD, Mary Beth Kenkel, PhD, and Jane Goodman-
Delahunty, PhD, JD, respectively, will receive and consider manuscripts through December 31,
2005. Should 2006 volumes be completed before that date, manuscripts will be redirected to the new

In addition, the P&C Board announces the appointment of Thomas E. Joiner, PhD (Department
of Psychology, Florida State University, One University Way, Tallahassee, FL 32306-1270), as
editor of the Clinician’s Research Digest newsletter for 2007-2012.






